Armeria maritima: Thrift–The Race Rocks taxonomy

gfjune513thrift-1024x768

Thrift, Armeria near Race Rocks Jetty. Photo by Garry Fletcher

 

gfjun2011thrift-1024x816

Thrift is a native plant which grows in the salt spray zone at Race Rocks .

Scientific classification
Kingdom: Plantae
(unranked): Angiosperms
(unranked): Eudicots
(unranked): Core eudicots
Order: Caryophyllales
Family: Plumbaginaceae
Genus: Armeria
Species: A. maritima

Armeria maritima (Mill.) Willd.

Other Members of the Angiosperms at Race Rocks.

taxonomyiconReturn to the Race Rocks Taxonomy
and Image File
pearsonlogo2_f2The Race Rocks taxonomy is a collaborative venture originally started with the Biology and Environmental Systems students of Lester Pearson College UWC. It now also has contributions added by Faculty, Staff, Volunteers and Observers on the remote control webcams.

–Garry Fletcher

 

DND Blasting and Disturbance Of Marine Birds and Mammals at Race Rocks

PART 35.2.2.6 Disturbance by Pedestrians and Domestic Animals
Observed pedestrian effects were confined to monitoring areas on Great Race Rock. Pedestrian traffic was fairly constant throughout the year with a daily average of nearly three events (Table 9). The Reserve’s caretakers had a dog that was observed outdoors infrequently on Great Race Rock. No wildlife displacement was observed in response to the dog. A domestic cat was observed outside the house on one occasion, but no disturbance was noted. Pedestrian traffic, other than that of the researchers associated with this study, was common and occurred on most days. The Reserve’s caretakers and their family members, staff and students affiliated with LBPC (Photo 14), maintenance personnel, DFO enforcement officers, and tourists constituted the pedestrian traffic on Great Race Rock during monitored days. Although a sign-in log is maintained by LBPC to track the number of human visitors to Great Race Rock, those data were not analyzed in this study. Pedestrians displaced seal and sea lions on Great Race Rock. Pedestrian-caused disturbances typically involved: intentional clearing of northern elephant seals off the boat launch; incidental displacement of harbour seals in monitored Sub-Areas A, B, C, and H (Photo 15; Figure 20); incidental displacement of California sea lions (Figure 22) and to a lesser extent, northern sea lions in monitored Sub-Area A (near the dock); and incidental displacement of gulls throughout Great Race Rock (Table 8). On one occasion, two tourists were observed wandering through a grassy area that was being used for nesting by glaucous-winged gulls (Photo 16).

Photo 14. Students and staff from Lester B. Pearson College were frequent visitors to Great Race Rock. California
sea lions, such as those near the end of the dock, were often displaced from the vicinity by boats and people.
18 September 2003.

Photo 15. Approximately 200 harbour seals moved quickly from the shore of eastern Great Race Rock into the water immediately after being apparently startled by a high-pressure power washer being operated by a resident of the
island. This photo shows some of those animals displaced from Sub-Areas A&B. 25 September 2003

Photo 16. Two tourists wander through an active glaucous-winged gull nesting area (Sub-Area H) on Great Race
Rock; causing disturbance and risking egg destruction by trampling. 25 May 2003.

5.2.2.7 Disturbance by Aircraft
Very low numbers of aircraft were observed in or near the monitored area throughout the
monitored period (Figure 17; Photo 17). Most aircraft passed over or near the monitored area,
causing little or no apparent disturbance to wildlife (Table 8). Only one landing on the helipad on
Great Race Rock was observed. In January 2003, a Coast Guard helicopter did a brief landing in
order that we have an opportunity to observe the responses of birds and mammals. Some sea
lions, cormorants, and gulls were displaced. As reported by the ecoguardians in the 11 August
2003 entry of the Race Rocks Daily Log11 (a day on which LGL researchers were not present),
“A Coast Guard helicopter touched down several times, forcing young birds into other nests
where the adult birds pecked them apart. The disembodied heads and dismembered bodies of
seagull chicks now litter the island.” On 15 August 2003 we observed the carcasses of 6
glaucous-winged gull chicks near the eastern base of the light tower.
An aerial survey of
pinnipeds was conducted by DFO from a fixed-wing aircraft occurred on 10 April 2003. That
plane circled over Race Rocks for approximately 4 minutes at an estimated minimum altitude of
150 m asl. No birds were observed to flush, nor were any pinnipeds seen going into the water as
a result.

Photo 17. Most aircraft overflights did not cause animals to leave the rocks for the water or air. 17 October 2002.

5.2.2.8 Disturbance by Boats
Kayakers were rare in the monitored area. Only birds were observed (once) flushing in response
to the approach of a kayak. Boats operated by LBPC were observed regularly throughout the
monitored period (Figure 17), and together with the LGL boat, were the only boats to regularly
dock at Race Rocks. LBPC and LGL boats displaced modest numbers of birds and pinnipeds
from the dock area during most arrivals and departures (Table 8). Displaced animals included
California sea lions in Sub-Area A; northern sea lions in Sub-Areas A, 2-5, and 8-12; cormorants
and gulls from Great Race Rock and Sub-Area 2-5. Most trips by LBPC boats were between
Pedder Bay and the dock at Great Race Rock, via routes through the east-central part of the
reserve (Figure 25). Some illegal harvesting of fish and shellfish by recreational fishermen and
recreational scuba divers, respectively was observed during the study.


Figure 25. Relative distribution of Lester B. Pearson College boats observed in Race Rocks Ecological Reserve
during monitoring sessions from October 2002 through November 2003. Numbers represent observations in each
cell expressed as a percentage of the maximum total number (57) observed in a given cell. Colour coding: 0=blank;
>0-33.3=yellow; >33.3-66.7=orange; >66.7-100=red. Islands and the Ecological Reserve boundary are indicated.
Great Race Rock is identified as “GRR”. Note that for each separate trip to the area, vessels were recorded a
maximum of once in any given cell. Refer to Figure 2 and Figure 3 for further spatial information.

Pleasure boats (Photo 18) were observed throughout the monitored period, but were most
common during summer (Figure 17). Harbour seals, sea lions, and cormorants, were all
displaced by pleasure boaters (Table 8; Figure 20; Figure 22; Figure 24). Observations indicated
that rental boats and boats used for scuba diving typically caused the most disruption because
they approached haulouts the closest and sometimes anchored (contrary to regulations) near
haulouts. Most trips by pleasure boats were in the northern part of the Reserve (Figure 26).

Figure 26. Relative distribution of pleasure boats observed in Race Rocks Ecological Reserve during monitoring
sessions from October 2002 through November 2003. Numbers represent observations in each cell expressed as a
percentage of the maximum total number (43) observed in a given cell. Colour coding: 0=blank; >0-33.3=yellow;
>33.3-66.7=orange; >66.7-100=red. Islands and the Ecological Reserve boundary are indicated. Great Race Rock is
identified as “GRR”. Note that for each separate trip to the area, vessels were recorded a maximum of once in any
given cell. Refer to Figure 2 and Figure 3 for further spatial information.


Ecotour boats constituted the greatest amount of boat traffic in the monitored area, with peak visitation rates during the height of the summer tourist season (Figure 17; Photo 19). Daily numbers of ecotour boats ranged from 0 to 43, with as many as nine present in the study area at the same time. Some ecotour boats were observed to displace harbour seals, sea lions, cormorants, and gulls (Table 8; Figure 20; Figure 22; Figure 24), but most caused no observable effects. According to VHF radio communications among ecotour boat operators on marine channels 71 and 72, the presence of ecotour boats in the monitored area was a function of the location of killer whales within the ecotour operating region. For example, if killer whales were near the San Juan Islands, few if any ecotour boats travelled to Race Rocks. If killer whales were in the vicinity of Race Rocks, operators usually toured the Reserve. If no killer whales were known to be in the region, operators toured the Reserve as a “next-best” option. Most trips by pleasure boats were in the central part of the Reserve, focused on Sub-Areas 1, 2-5, 6-7, 8-12, and northern Great Race Rock (Figure 27).

Figure 27. Relative distribution of ecotour boats observed in Race Rocks Ecological Reserve during monitoring
sessions from October 2002 through November 2003. Numbers represent observations in each cell expressed as a
percentage of the maximum total number (211) observed in a given cell. Colour coding: 0=blank; >0-33.3=yellow;
>33.3-66.7=orange; >66.7-100=red. Islands and the Ecological Reserve boundary are indicated. Great Race Rock is
identified as “GRR”. Note that for each separate trip to the area, vessels were recorded a maximum of once in any
given cell. Refer to Figure 2 and Figure 3 for further spatial information.

5.2.2.9 Disturbance by Blasting
Observations of the effects of blasting on birds and pinnipeds were made during days when at
least one of the three ranges was active. Because so few observations were made during blasting in Whirl Bay (4 days) and on Christopher Point (1 day), the value of any inference made from
those data is limited. Further, on the only day that the Christopher Point Range was active,
blasting on that range had commenced prior to our arrival at Great Race Rock, precluding any
pre-blast observations. Additionally, blasting occurred on Bentinck Island that day also (Table
1). On one of the days that Whirl Bay was active, Bentinck Island was also active.
None of the data we collected suggested that blasting in Whirl Bay had any adverse effects on bird or pinniped behaviour in the study area (Table 8, Figure 19, Figure 21, Figure 23).(See Editor’s comments in the discussion below )

Some blasts in Whirl Bay were barely audible to us outside the top of the light tower and a spray of
water was occasionally observed.
The Christopher Point Range was active on 11 days during the study period. Four to 20
ordnances were detonated per day, most of which were <100 g (Appendix 9). Blasting monitored
on Christopher Point occurred at a time (20 February 2003) when few birds and pinnipeds were
in the study area (Figure 6 through Figure 12). Four basic charges, 454 g each, were detonated
separately. The first blast we heard was clearly audible and occurred just as we were arriving at
Race Rocks. Approximately 10 northern sea lions were observed leaving a haulout, apparently in
response to the blast. Some sea lions remained in the water near Sub-Area 8-12 all day, but were
not observed to haul out again that day.
Blasting on Bentinck Island was the most frequent form of blast-related, potential disturbances
observed (Figure 18). That range was active with demolition activities throughout the study
except mid-June through early October 2003, due to an extreme fire hazard caused by prolonged
drought. Demolitions on Bentinck Island are tabulated in Appendix 8. In summary, blasting
occurred on Bentinck Island on 26 days (5.2%) of the 502 day period 13 July 2002 through 27
November 2003.

6 DISCUSSION
6.1 Relevant Legislation
A number of provincial, federal, and international acts have direct implications for the
conservation of marine life in Race Rocks Ecological Reserve (Appendix 1). Presently,
legislation contained within the federal Fisheries Act (by way of the Marine Mammal
Regulations), the Canadian Environmental Assessment Act, the Migratory Birds Convention
Act, the provincial Wildlife Act, and the provincial Ecological Reserve Act have the greatest
relevance for human-caused influences on wildlife in Race Rocks Ecological Reserve. The
federal Species at Risk Act and the Oceans Act are likely to play an increased role in the future
given the recent trend in concern about some species (e.g., killer whales and northern sea lions)
and in the event that Race Rocks achieves Marine Protected Area status.
A strict interpretation of the Fisheries Act, Migratory Birds Convention Act, the Wildlife Act and
the Ecological Reserve Act would indicate that these acts are violated regularly within Race
Rocks Ecological Reserve by factors within the Reserve (e.g., boats and people) and by factors
outside the Reserve (i.e., military exercises involving ordnance). In addition to several violations
of the tidal waters fishing regulations (under the Fisheries Act) events we witnessed during the study, human activities frequently disturb and disrupt bird and mammal activity patterns. Such factors are discussed in greater detail in subsequent sections.
Best practices of dive vessels, divers, tour operators (Province of BC 2002; Appendix 1) are
voluntary guidelines for the conduct of selected recreational activities within Race Rocks
Ecological Reserve. Those guidelines cannot eliminate adverse effects of boats on marine life,
but they can reduce them. While we did not collect detailed data on all aspects of compliance
with those guidelines, it was apparent to us that the guidelines were often not followed by boat
operators and others in the Reserve. In general, commercial tour boats conformed best to the
guidelines—perhaps due to an awareness of the guidelines and the importance of proper conduct
on the part of the boat captains. On the other hand, dive vessels and pleasure boaters were more
likely to operate in a manner inconsistent with the guidelines.

The people who live on Great Race Rock serve as “ecoguardians” in the employ of LBPC and
are charged with ensuring that the laws pertaining to the Reserve are respected. The
ecoguardians have no authority to enforce any of legislation listed above, but do attempt to
prevent or stop people from violating laws by confronting them and informing them of the
situation. The ecoguardians also report infractions and apparent infractions to the Department of
Fisheries and Oceans. Two Department of Fisheries and Oceans enforcement officers visited
Race Rocks via boat on one occasion (23 January 2003) during the days we monitored. Their
presence that day displaced two northern sea lions, 12 cormorants, and 13 gulls.

6.2 Use of Race Rocks by Marine Birds and Pinnipeds
The biophysical environment of Race Rocks provides habitat for many species (Table 3;
Appendix 5). The value of the area for foraging by marine birds appears modest compared to the
value of nearby areas outside the Reserve. The value of the area for foraging by marine
mammals is not known. We observed seals and sea lions feeding on salmon and unidentified fish
species, and harbour seals were observed once feeding on an octopus. Northern elephant seals
appear to be using the area mainly during the moulting seasons. Harbour seals use the area as a
haulout year-round, but that species does not exhibit the same degree of site selection as the three
other pinniped species. For example, harbour seals are the only pinnipeds that haul out on the
nearby shores of Bentinck and Vancouver islands. The area serves as a staging site for California
sea lions passing through Juan de Fuca Strait en route to the Strait of Georgia and Puget Sound.
Race Rocks is also a wintering, and perhaps staging area for northern sea lions. Killer whales use
the area occasionally as part of their movement corridor and possibly for foraging though we
made no such observations.
The fact that Race Rocks provides highly suitable habitat for marine birds and pinnipeds is
indisputable. However, an assessment of the extent to which Race Rocks provides important or
critical habitat for any given species is not so straightforward. According to the Species at Risk
Act:
“Critical habitat is habitat which is necessary for the survival or recovery of a
listed wildlife species and that is identified as the species’ critical habitat in the
recovery strategy or in an action plan for the species.” For species that are not listed under the Species at Risk Act, we use the term critical habitat to
refer to any habitat that is essential to the life processes of a species and that in the absence of
that habitat, the population would suffer detectable adverse effects.
In this context, it is not clear to what extent the population sizes of marine birds and pinnipeds
that presently occur in or that migrate through or over the waters of Juan de Fuca Strait and the
Strait of Georgia would differ in the absence of the exposed land in Race Rocks Ecological
Reserve. For example, while Race Rocks provides harbour seals, pigeon guillemots, black
oystercatchers, and glaucous-winged gulls with suitable breeding habitat, such habitat occurs
elsewhere in the marine areas of the Georgia Depression Ecoprovince (e.g., Campbell et al 1990
a, b; Jeffries et al. 2000; Evenson et al. 2001; Chatwin et al. 2002; Sullivan et al. 2002).
However, there are few if any areas like Race Rocks that provide suitable breeding habitat and
that are presently unoccupied. As such, the loss of Race Rocks likely could result in reduced
population sizes for species that breed there.
6.2.1 Birds
Gulls and cormorants, the most abundant birds in Race Rocks Ecological Reserve, typically used
the area as a resting site from which they would fly to marine feeding areas within a few
kilometres. Depending on the species, the Reserve provides breeding, staging, wintering, and
year-round habitat. The area provides nesting habitat for glaucous-winged gulls, pigeon
guillemots, and black oystercatchers, and serves as migration/staging and wintering habitat for
several species of gulls and three species of cormorants. Most use by shorebirds appears to be for
migration/staging.
6.2.2 Northern Elephant Seal
Use of Race Rocks by northern elephant seals has increased substantially in recent years, most
likely as a result of the species dramatic recovery from near extinction in the early 20th century
and the species’ tendency to be highly migratory. The peak number (22) of adults and subadults
observed in spring 2003 may well represent a record number for BC during recorded history. In
recent years, northern elephant seal pups have been sighted at haulouts in the inland waters of
Washington State (Jeffries et al. 2000) and at least three are reported to have been born there
(Hayward 2003). It is likely that numbers of northern elephant seals using Race Rocks will
continue to increase. Given the recent records of breeding in Washington (Hayward 2003), Race
Rocks might be used for pupping, though it is unlikely that it would ever become a breeding
rookery of any significance—especially as long as there is infrastructure on Great Race Rock.
The primary value of Race Rocks for this species will likely remain as a haulout for a modest
number of animals during seasonal moulting periods, but because such a small fraction of the
population occurs there, it is unlikely that the Reserve provides the species with any critical
habitat.
6.2.3 Harbour Seal
Harbour seals occur year-round at Race Rocks, and use the area for all aspects of their life
history. Whereas northern elephant seals and sea lions moved to locations above the high tide
level on haulouts in the study area during flood tides, harbour seals remained confined to
intertidal areas where they were displaced by tides, swells and waves. Thus, their numbers exhibited considerably greater fluctuations at hourly, daily, and seasonal time scales compared to
other pinnipeds in the area. Numbers hauled out in the study area peaked during the summer
pupping and moulting periods, which is consistent with other research on the species (e.g.,
Jeffries et al. 2003).
Numbers of harbour seals have rebounded since the end of Canadian and U.S. government-
sponsored culling programs prior to the early 1970s. The result of this increase is that numbers of
harbour seals in the Georgia Depression Ecoprovince are likely as high as they were prior to the
onset of the culls and may be at or very near the predicted carrying capacity of local habitats. For
example, Olesiuk et al. (1990) estimated that from 1973-1987 (the period they examined)
harbour seals in British Columbian waters had a mean annual rate of increase of 12.5%, resulting
in nearly a 10-fold increase in numbers. Those authors speculated that 12.5% annual population
growth was close to the maximum intrinsic growth rate of the species. Similarly, Jeffries et al.
(2003) calculated that harbour seals in nearby Washington State waters increased 7-10 fold
between 1970 and 1999 and that the population of harbour seals in Washington State could
decline by up to 20% and still be above the maximum net productivity level for the population.
Harbour seals are known to move across the international boundary in the Georgia Depression
Ecoprovince (Huber et al 1993, cited in Calambokidis and Baird 1994). Clearly, there are no
reasons for concern about local harbour seal conservation based on population status alone.
Numerically speaking, the local population is in good shape and there is an abundance of high-
suitability habitat elsewhere in the Georgia Depression Ecoprovince (Jeffreies et al. 2000). Thus,
it is unlikely that Race Rocks Ecological Reserve presently provides critical habitat for this
species.
Bioaccumulation of anthropogenic toxins and their effects on immune-responses and fertility of
harbour seals is a subject matter that is receiving increased attention—particularly because of
parallel concerns about killer whales (see Calambokidis et al. 1994 and references therein).
However, we are not aware of any empirical data that presently indicate that toxins are adversely
affecting total numbers of harbour seals in the Georgia Depression Ecoprovince.
6.2.4 California Sea Lion
The number of California sea lions in British Columbian coastal waters has increased
substantially during the latter 20th century, particularly since 1980 (Bigg 1988a). The species
does not breed in BC, nor are there any records that it did so in the past. This increase is also the
result of a rebound in numbers following the termination of government-sponsored culls. Bigg
(1988a) reported that California sea lions were not present on Race Rocks prior to 1965.
Numbers have increased since then. P. Olesiuk (pers. comm. 2002) indicated that California sea
lions are expanding their non-breeding range northward within BC. Little is known of this
expansion, or of its present or future impacts on other marine resources. The patterns of
abundance at Race Rocks observed during this study indicate that the value of Race Rocks for
this species is primarily as a migration/staging area. California sea lions migrate to BC from
southern waters (e.g., California) then move between various haulouts and feeding areas,
including Race Rocks. Range expansion to the north may also explain the apparent decline in
peak numbers occurring at Race Rocks. An apparent increase in the use of the Victoria
waterfront and Trial Island haulout by California sea lions may partially explain an apparent
decline in use of Race Rocks by that species in autumn 2002. For example, data in Bigg (1988a) indicate that numbers of California sea lions at Race Rocks during February (not the peak month
according to recent data) increased from 13 in 1978 to 320 in 1982, to 799 in 1984. Demarchi et
al. (1998) reported a peak count of 836 in October 1997. In the present study, peak counts were
considerably lower at 244 individuals in September 2003. It is unlikely that Race Rocks
Ecological Reserve presently serves as critical habitat for this species.
6.2.5 Northern Sea Lion
The number of northern sea lions in British Columbian coastal waters has increased substantially
during the latter 20th century, and in particular, since 1980 (Bigg 1988b). This increase is also the
result of a rebound in numbers following the termination of government-sponsored culls. Recent
trends in the abundance of northern sea lions suggest an average annual rate of increase of 3.2%,
resulting in a population size that is more than double what it was when the species was
protected in 1970 (P. Olesiuk, unpublished data). No new breeding rookeries have been
established in recent years. Numbers of northern sea lions using Race Rocks have also increased
since culling ended. For example, Bigg (1988b) indicated that prior to 1965, northern sea lions
had not been recorded at Race Rocks. In 1971, no more than 71 northern sea lions were recorded
there. In 2002 we recorded a maximum count of 528 and in 2003, 555 individuals (Figure 12).
Observations made during this study indicate that numbers of northern sea lions at Race Rocks
fluctuate seasonally. Our findings concur with those of Bigg (1988b), who identified Race Rocks
as a winter haulout. Adult males are first to arrive in late summer. Females, subadults, and young
arrive later, with total numbers peaking in early winter. Though pups born at distant rookeries
were seen at Race Rocks, nursing behaviour was observed only occasionally. As winter
progressed animals began to leave the area and by late February few if any were present. This
pattern indicates that the area is used as a wintering site and may also serve as a
migration/staging area for animals moving between the Strait of Georgia, Juan de Fuca Strait,
and outer coastal areas north and south of Juan de Fuca Strait.
Of the four species of pinnipeds that commonly occur at Race Rocks, only the northern sea lion
might be considered to be presently using the area as critical habitat. This opinion is predicated
on the following points: 1) the Western Stock of northern sea lions has exhibited a dramatic
decline in numbers in recent decades for unknown reasons. For the same reason(s), it is possible
that the Eastern Stock could also decline in the future; 2) Despite data suggesting that the
population is growing at a modest rate, the northern sea lion has recently been up-graded by
COSEWIC to a species of Special Concern and has been Red-Listed by the Province for several
years.
6.3 Effects of Natural and Human-Caused Disturbance
Animals respond to changes in environmental conditions for many different reasons and in many
different ways. This study focuses on only two responses to disturbance: increased activity
(pinnipeds only) and displacement from a terrestrial site to the air (birds) or water (birds and
pinnipeds). During this study it was clear that Race Rocks Ecological Reserve is exposed to
substantial fluctuations in many natural factors—often over very short time scales. Factors
operating at or below a daily time scale, including changes in tide and swell height, blasting on
Bentinck Island and human-caused disturbances on Great Race Rock exerted strong influences on the abundance of some species. None of the data we collected suggested that blasting in Whirl Bay had any effects on bird or pinniped behaviour in the study area. Although Demarchi et al. (1998) did observe northern sea lions responding to blasts in Whirl Bay, C-4 charges detonated during that study were considerably larger (thus, louder) than those used on the range during this
study. At best, some of the blasts in Whirl Bay were barely audible to us outside the top of the
light tower and a spray of water was occasionally observed. Insufficient monitoring during days
when the Christopher Point Range was active limits our ability to draw conclusions about the
effects of such blasting on birds and pinnipeds at Race Rocks. It should be noted that explosions
in WQ are not the only shore-based ones with the potential to disturb marine birds and pinnipeds
near southern Vancouver Island. The fireworks display at Butchart Gardens on Saanich Inlet
(approximately 32 km to the north) each Saturday evening during summer results in a
considerable amount of explosives-generated noise near the marine environment. Additionally,
there are fireworks associated with Canada Day, BC Day, and Halloween. Blasting in rock
quarries and for highway construction also occur periodically on southern Vancouver Island. The
potential for the foregoing to disturb marine wildlife is substantial, though the actual effects are
unknown.

Editor’s Note: This discussion of the results of DND Blasting is somewhat problematic and perhaps the result of too few observations by the research team when actual blasting was taking place. It must be noted that most of the blasting events occurring during the year of the study were not observed and recorded by the researchers. The following two references point to some archival footage that may lead to different conclusions:

https://www.racerocks.ca/before-and-after-images-of-dnd-blasting-effects/

DND Blasting Disturbs sea lions

DND Demolition Blasts affects Mammals and Birds at Race Rocks

The purpose of examining how marine birds and pinnipeds at Race Rocks responded to changing
environmental conditions and human-caused disturbances is to provide a better understanding of
the local ecological environment, and allow management actions to be sensitive to normal
processes. There are many reasons why animals respond to disturbances. Responses to
disturbance by birds and pinnipeds at Race Rocks are most likely the result of learning
experiences elsewhere or simply the result of reactions to sudden changes in the environment.
For example, not long ago, seals and sea lions were hunted extensively as vermin. Outside Race
Rocks Ecological Reserve animals continue to be shot and shot at for First Nations’ harvesting,
animal control at aquaculture facilities (Hume 2000), and as perceived pests and competitors by
commercial fishermen. Gulls and cormorants are also shot and shot at for purposes of wildlife
control at some airports and may be shot at by waterfowl hunters. As long as animals are
persecuted with firearms they can be expected to associate loud noises with danger; responding
by becoming alert and moving to the relative safety of the air or water. Such behaviour would be
expected even though animals are not shot or shot at in the Race Rocks Ecological Reserve to
our knowledge.

Humans and their actions have the potential to disturb wildlife. The following classification is
based on Wilson and Shackleton (2001), who described 3 theoretical classes of animal responses
to disturbance:

  • 1. Short-term acute behaviours—include responses that happen immediately in response to
    a disturbance. They include: increased vigilance, fleeing, group dissolution, mother-
    offspring separation, and injury.
    2. Medium-term chronic behaviours—include behavioural responses that occur over a
    period of days to months in response to disturbance. An example is temporary or
    permanent range abandonment.
    3. Long-term demographic consequences—are likely the most important aspect of matters
    surrounding wildlife disturbance. Demographic consequences include: population
    decline, extirpation and extinction.

Marine birds and pinnipeds at Race Rocks are exposed to a number of different disturbance
stimuli that alter normal behaviour patterns. The fact that human activities disturb wildlife does
not in itself provide a basis to ban such activities. Indeed, if that were the case, no people or
boats would be permitted in the Race Rocks Ecological Reserve without authorization. If
disturbances have no consequences for the population, or even if the population consequences
are sustainable, restricting human activities for the sake of preventing disturbance is likely to
have negative social consequences that are out of proportion to the impacts that are being
avoided or mitigated.

It is necessary to place the disturbance of marine life at Race Rocks into context in order to begin
to assess the significance of any adverse effects. The effects of disturbance can be viewed in a
hierarchical framework where effects on a population or species range from benign to severe
(Figure 28). Consequences of disturbance at the extremes of the range are obvious—stimuli that
do not elicit reactions are of no consequence while those that cause extirpation or extinction are
of great concern. Quantifying the existence and significance of the effects in-between these
extremes poses a far greater challenge. The US National Marine Fisheries Service
(50CFR216.103)12 defines a negligible impact as:

  • “ …an impact resulting from the specified activity that cannot be reasonably
    expected to, and is not reasonably likely to, adversely affect the species or stock
    through effects on annual rates of recruitment or survival.”

Ecoguardians resident on Great Race Rock provide a measure of protection for marine life in the Reserve, but the presence of inhabitants and infrastructure is not without impacts. In recognizing
some of those impacts, efforts are being taken to avoid or mitigate them (Province of BC 2002).
The infrastructure and various activities required to support the ecoguardians and the light station
undoubtedly affects use of the area by birds and pinnipeds and poses some risks to animals using
the area. Several potential effects are summarized below.

  • • Spatial footprint—Buildings and infrastructure eliminate or restrict use by some species. For example, the net area of grassy sites available for glaucous-winged gull breeding is reduced by a substantial amount.
    • Accessibility—The presence of a dock and boat launch makes Great Race Rock
    accessible to humans via boats. In the absence of those structures, boat access would be very difficult and extremely hazardous. The presence of a helipad provides safe helicopter access, however the island would still be accessible without it.
    • Disturbance and displacement—The presence of people and active machinery outside the buildings often disturbs and displaces birds and pinnipeds.
    • Noise pollution—Diesel generators operating during the study period did so without a properly functioning muffler, resulting in high levels of noise on the south side of Great Race Rock.

12 http://frwebgate.access.gpo.gov/cgi-bin/get-cfr.cgi?TITLE=50&PART=216&SECTION=103&YEAR=1999&TYPE=TEXT

• Risk of fuel spill—Diesel required for the generators poses a risk of spill during fuel
transfer to the island and during storage and use on the island.

Figure 28. Conceptual model of the hierarchical effects of exposing a wildlife species to a non-directly lethal visual
or aural disturbance stimulus.

6.3.1 Birds
Of the birds observed on the rocks of the monitored area, cormorants appeared to be the most
sensitive to human-caused disturbances. Cormorants sometimes took to the water or air following a blast or close approach of a boat, often simply moving to another part of the study
area. The reduced probability of displacement in response to a blast on days when the
temperature was higher might have implied that warm weather was particularly valuable for
thermoregulation and that birds were reluctant to lose opportunities to dry their plumage or to
remain dry. The apparent avoidance of Great Race Rock by Brandt’s cormorants during winter
may suggest that that species is particularly sensitive to disturbances by people. However,
because cormorant attendance at the rocky areas of Race Rocks is normally very dynamic as
individuals move between terrestrial roosting areas and marine feeding areas, it is not possible to
assess the extent to which such disturbances adversely affect cormorants. Their continued
presence in the study area indicates that any adverse effects of disturbance are likely modest.
Gulls were very sensitive to overflights by bald eagles and often reacted by taking flight. In most
instances, gulls settled back within seconds or minutes of the disturbance. During the breeding
season, glaucous-winged gulls were particularly sensitive to the presence of people on Great
Race Rock and often acted very aggressively, dive-bombing at and defecating on anyone that
approached within a few meters of a nest. The influence of swell height on gull abundance at
Race Rocks (higher swells resulted in more gulls in the study area) might have reflected reduced
foraging due to unsuitable off-shore feeding conditions, reduced areas for loafing, and/or other
factors. It is also possible that some gulls moved to Race Rocks from the vicinity of Bentinck
Island during days when blasting occurred there.
Adult pigeon guillemots breeding on Great Race Rock commonly roosted on the periphery of the
island and on the dock during the morning. They were often flushed by boats and people, though
the birds usually returned soon after the disturbance had passed.
The apparent avoidance of Great Race Rock by bald eagles and Brandt’s cormorants is believed
to be in response to the presence of humans and the sensitivity of those species to disturbance.
However, we doubt that the maximum numbers of these species in the Reserve would be
significantly different in the absence of humans and infrastructure on Great Race Rock because
other resting areas exist in the Reserve.
Sullivan et al. (2002) speculated that disturbance and predation by bald eagles at glaucous-
winged gull colonies might be important factors contributing to the observed decline in the
reproductive output of those gulls in the Southern Strait of Georgia. Chatwin et al. (2002) made
similar conclusions regarding bald eagle impacts on pelagic and double-crested cormorant
colonies. Concerns about recent declines in numbers of glaucous-winged gulls and pelagic
cormorants at specific breeding sites in the southern Strait of Georgia may place increased
importance on the value of Great Race Rock as a breeding area, particularly for glaucous-winged
gulls. Because so few pelagic cormorants breed at Race Rocks and because breeding is sporadic
there, it is unlikely the area provides the species with critical nesting habitat. The situation at
Great Race Rock poses somewhat of a dilemma in this regard because on one hand, the presence
of buildings, infrastructure and people substantially reduces the area of land available for nesting
by glaucous-winged gulls. On the other hand, we suspect that the presence of people serves to
deter bald eagles from using Great Race Rock (see Table 2), thereby affording a measure of
protection to the gulls that do breed there. Race Rocks could be providing glaucous-winged gulls
with important nesting habitat that is relatively free of bald eagle disturbance. If other colonies
continue to decline, the importance of Race Rocks might increase in the future. However, it is unlikely that the Reserve presently provides critical habitat for glaucous-winged gulls. Further, while recent declines in numbers breeding at some colonies have been noted (Sullivan et al. 2002), the breeding population in the Georgia Depression Ecoprovince is believed to have doubled between 1960 and 1986 (Mahaffy et al. 1994). Expanded food availability at landfills and the fact that the species nests successfully on a number of human-made structures (e.g.buildings and structures associated with port facilities) have likely contributed to the increase (Vermeer et al. 1988).

6.3.2 Northern Elephant Seal
Of all pinniped species that occur at Race Rocks, northern elephant seals were the most tolerant
of any forms of disturbance we observed. Holst and Greene (2002) also found that military
training activities that generated noise elicited few noticeable reactions from northern elephant
seals. We did not detect any meaningful responses of northern elephant seals to either natural
factors or blasting. It is not known whether the decline in numbers of northern elephant seals that
occurred in the weeks following blasting on Bentinck Island in early May 2003 represented a
reaction to blasting or not. However, given the species’ lack of responses to blasting on a daily
time scale and the fact that animals hauled out at that time of year are expected to depart haulouts
following the moult, the decline was likely coincidental with blasting. The significance of the
complex interaction term of tide height, swell height, and blasting (Table 4) might reflect
increased afternoon counts of individuals that were present in the morning, but that were
previously hidden from view in the morning by sea lions that moved or departed the area in the
afternoon. It is also possible that the significance of the term is spurious. In any event, we found
nothing to suggest that northern elephant seals in the study area were adversely affected by
environmental factors or blasting in a meaningful way. Considering this and the status
information discussed in section 6.2.2, at present, no significant adverse effects stemming from
single or cumulative disturbance types on the regional population of this species are expected to
originate in or immediately adjacent to the study area.

6.3.3 Harbour Seal

In situations where most harbour seal activity did not proceed to the point of displacement,
blasting on Bentinck Island was the only factor that caused noticeable increases in harbour seal
activity (i.e., moving from a head-down to head-up position). Other factors such as pedestrians
caused increased activity. However, because animals moved quickly to the water in such events,
the sampling data do not reflect this as no counts were made between the time that the
disturbance occurred and the onset of displacement. Aside from seasonal effects, the abundance
of harbour seals in the study area was dictated primarily by tide height. As shown in Photo 11,
harbour seals were particularly sensitive to changes in tidal height because they selected
primarily the intertidal reaches of the study area for hauling out. Rising tides displaced harbour
seals from haulouts, while falling tides provided opportunities for hauling out. Harbour seals
haul out year-round, but the peak in this behaviour that occurs in the summer corresponds to two
biologically important events. First, harbour seals give birth while on land where mother-pup
pairs spend 90-100% of their time during the 4-6 week nursing period (Huber et al. 2001).
Second, each summer harbour seals moult (shed) their fur and grow a new coat. The fact that
harbour seals moult in the summer and that they haul out to do so likely reflects
thermoregulatory constraints (Ling et al. 1974). By hauling out, moulting seals reduce heat loss at a time when their coat provides the least amount of insulation. Also, basking in the summer
sun and on sun-warmed substrates heats the skin surface, likely increasing the metabolic rate of
hair follicles, thereby increasing the rate of hair growth. Evidence that thermal constraints affect
haulout behaviour is provided by seal responses during days when blasting occurred on Bentinck
Island. While greater numbers of projects (blasts) per run resulted in increased probability of
displacement, both swell height and air temperature also appeared to affect the probability of
displacement to the water. Following blasts on Bentinck Island, harbour seals were more likely
to go into the water when the air temperature was higher and the swell height was lower (Table
5). On cooler days with higher swells, harbour seals were more likely to remain hauled-out after
a disturbance stimulus possibly because of a relatively greater need for dermal warming at that
time. Despite variable reactions to individual blasting events, overall changes in the numbers of
harbour seals hauled out in the study area appeared to be adversely affected by blasting on
Bentinck Island, but the effect was not statistically significant. This was most likely because of
two reasons: 1) the dramatic effects of increased tide height masked any effects of blasting, and
2) small sample sizes. Although we were unable to observe seal responses to blasting during
summer because of a military range closure, the same pattern of declining abundance in response
to increased tide heights would have likely masked any effects of blasting. Data shown in Figure
14 suggest that with increased sample sizes, the effects of blasting on Bentinck Island would
likely have become statistically significant.

Harbour seals hauled out on Great Race Rock were usually very skittish in the presence of
humans. Seals near the dock (Photo 1; Sub-Areas A&H) seldom remained hauled out when boats
or people approached. Those on the east side of Great Race Rock (Sub-Areas B-D) were quick to
respond to human-caused disturbances that resulted in noise (e.g., an aluminum ladder dropped
on a concrete walkway, machinery starting up, close approaches by pedestrians). For example,
approximately 200 harbour seals moved quickly from the shore of eastern Great Race Rock into
the water immediately after a gasoline-powered high-pressure power washer started near the
caretaker’s residence.

Unlike the other pinnipeds in the study area, harbour seals do not undertake long-distance
migrations. A non-migratory life strategy is more conducive to a greater degree of familiarity
with certain aspects of an animal’s home range than is a migratory one. Harbour seals are long-
lived (up to 30 years; Bigg 1981) and individual harbour seals probably stay in the vicinity of the
study area year-round. Because the study area has been exposed to blasting, boats, and
pedestrians for many years, it is not unreasonable to assume that some harbour seals have
habituated somewhat to some disturbances there. The ability of harbour seals to habituate to
disturbances is supported by the fact that they are easily kept in captivity and exhibit a rapid
adjustment under restrained conditions (Bigg 1981). Harbour seals at Race Rocks, although
skittish in the presence of people, are more tolerant of close approaches by humans than are
harbour seals in areas where they are shot and shot at (M. Demarchi pers. obs.).

Harbour seals in Race Rocks Ecological Reserve exhibited short-term acute behaviours in
response to disturbances resulting from natural factors, blasting, boats, and pedestrians. Holst
and Greene (2003) made similar observations of harbour seals during noisy military training
exercises in California. The fact that such responses occur in response to human activities
indicates that disturbance (in the context of the Fisheries Act; or “takes” in the context of the US
Marine Mammal Protection Act) occurs. However, it is unlikely that any seals are seriously injured by any of the disturbances, nor is it likely that mother-pup pairs are permanently
separated resulting in dead pups, in a manner reported by Johnson (1977). We observed three
dead adult/subadult harbour seals on the shore of Great Race Rock, but did not observe any dead
pups during the study. Considering this and the status information discussed in section 6.2.3, no
significant adverse effects stemming from single or cumulative disturbance types on the regional
population of this species are expected to originate in or immediately adjacent to the study area.

6.3.4 California Sea Lion
Blasting on Bentinck Island and boat traffic increased the activity levels of California sea lions
hauled out in the study area. Pedestrians on Great Race Rock also caused increases in activity,
but usually fewer than ten animals were involved. Aside from seasonal effects, the abundance of
California sea lions in the study area was dictated primarily by swell height. As swell height
increased, so did the probability of a decline in abundance. According to the pattern of declining
abundance observed in autumn 2003 prior to blasting, the decline in numbers of California sea
lions following blasting in early October 2002 was more likely the result of natural migration
patterns than displacement due to disturbance (Figure 11).

Blasting on Bentinck Island, pleasure boats, and pedestrians all displaced California sea lions to
the water. Holst and Greene (2003) made similar observations of California sea lions during
noisy military training exercises in California. California sea lions were increasingly likely to be
displaced due to blasting on Bentinck Island with greater numbers of projects in a run and when
wind directions acted to amplify blast noise. Tide height did not appear to influence the
abundance of hauled-out California sea lions because they typically hauled out above the
intertidal zone. Pleasure boats that approached haulouts too closely were observed to displace
animals. California sea lions hauled out on Great Race Rock usually tolerated the presence of
humans nearby, but there was consistent displacement involving animals moving off the dock
and nearby shore in response to boats and pedestrians. It was occasionally possible to dock a
boat without displacing all individuals nearby, possibly because those animals had habituated to
such disturbances (Photo 14).

California sea lions in Race Rocks Ecological Reserve exhibited short-term acute behaviours in
response to disturbances resulting from natural factors, blasting, boats, and pedestrians. Such
responses to human activities indicates that disturbance (in the context of the Fisheries Act; or
“takes” in the context of the US Marine Mammal Protection Act) occurs. However, it is unlikely
that any animals are seriously injured by any of the disturbances. Considering this and the status
information discussed in section 6.2.4, at present, no significant adverse effects stemming from
single or cumulative disturbance types on the regional population of this species are expected to
originate in or immediately adjacent to the study area.

6.3.5 Northern Sea Lion
Blasting on Bentinck Island increased activity of hauled-out northern sea lions throughout the
study area. Animals in Sub-Areas 2-5, 6-7, 8-12, and 13 (i.e., closer to Bentinck Island) were
particularly sensitive. Animals in those sub-areas were also exposed to the greatest amounts of
boat traffic. Despite this, we did not observe any obvious shifts in animal distribution to areas
that were not as prone to disturbance by blasting and boats (e.g., Sub-Areas 14; 15-24).
Pedestrians on Great Race Rock also caused increases in activity, but usually fewer than ten animals were involved. Aside from seasonal effects, the abundance of northern sea lions in the
study area did not appear to be predictably influenced by any given factor. On several occasions,
northern sea lion activity increased substantially and many animals moved to the water, yet we
could not clearly identify any disturbance stimuli. In one such case, the only apparent cause was
the sudden appearance of the sun as a cloud moved past. Such behaviours have been observed by
others (e.g., Porter 1997). We speculate that those events are likely triggered by the actions of
one animal that, for whatever reason, panics. The effects of that animal cascade through the
group, prompting similar behaviours in others. Such events are likely inevitable for species that
occur in groups where such groups confer a measure of safety in that danger does not have to be
detected by every animal in order for an appropriate response to occur.
Disturbances caused by blasting on Bentinck Island, pleasure boats, and pedestrians all displaced
northern sea lions to the water.
Of all species monitored, the northern sea lion was most sensitive
to blasting on Bentinck Island. During 43 demolition runs, 1 animal was observed to be
displaced to the water in response almost 91% of the time. In a few instances, haulouts were
completely cleared of northern sea lions.
Because of this high rate of response, no natural factors
were found to significantly affect animal responses. Tide height did not appear to influence the
abundance of northern sea lions because, like northern elephant seals and California sea lions,
they typically hauled out above the intertidal zone or moved to higher points on the haulout
during flood tides. Pleasure boats that approached haulouts too closely were observed to displace
northern sea lions. Northern sea lions hauled out on Great Race Rock were less tolerant of the
presence of humans nearby, as there was consistent displacement involving animals moving off
the dock in response to boats and pedestrians.
The decline of the Western Stock of northern sea lions in the Gulf of Alaska and Aleutian Islands
in the late 1970s and 1990s is presently a matter of intense research13. Investigations into the
causes of the decline involve a number of hypotheses, including nutritional stress (Trites and
Donnelly 2003), human-caused disturbance (L Kucey14, in progress), and predation by killer
whales following a decline in whale prey as a result of excessive commercial whaling in the past
(Springer et al. 2003). While there is presently no consensus on the cause(s) of the decline,
Pascual and Adkinson (1994) concluded that only a long-term change in the environment or
novel catastrophe would be capable of causing the magnitude of the observed decline. Pascual
and Adkinson (1994) note the difficulty in eliminating human-caused disturbance as a causative
factor because human activity in the region has increased simultaneously with the decline in sea
lion numbers. However, if disturbance was the primary cause, one should expect the Eastern
Stock (of which animals at Race Rocks are part) to have exhibited a similar, if not more
pronounced decline because of perhaps an even greater increase in human activities within their
range. Springer et al. (2003) favour the predation hypothesis over others such as nutritional stress
and disturbance for several reasons. According to them:

  • “The absence of beach-stranded [northern sea lion] carcasses is one of the most
    intriguing and perplexing features of these declines. Sea otter mortality from
    nutritional limitation, disease, and pollution typically results in large numbers of
    stranded carcasses. Pinnipeds often sink when killed at sea, although many such
    individuals float to the surface and wash ashore later. Malnourished or diseased
    pinnipeds commonly haul out to die. The near absence of stranded carcasses and
    a lack of reports of distressed animals on beaches or of emaciated animals taken
    by subsistence hunters thus are most consistent with losses to predators.”

13 refer to: http://nmml.afsc.noaa.gov/AlaskaEcosystems/sslhome/StellerHome.html
14 refer to: http://www.marinemammal.org/MMRU/laura.html

While we did not examine body condition of northern sea lions closely, in our opinion, the
individuals at Race Rocks did not exhibit any signs of malnutrition (e.g., lethargic behaviour,
emaciated bodies with visible bone structure).

Northern sea lions in Race Rocks Ecological Reserve exhibited short-term acute behaviours in
response to disturbances resulting from natural factors, blasting, boats, and pedestrians. The fact
that such responses occur in response to human activities indicates that disturbance (in the
context of the Fisheries Act; or “takes” in the context of the US Marine Mammal Protection Act)
occurs. Although we observed a few subadult males with cuts and patches of missing skin, such
injuries likely resulted from fights with each other. It is unlikely that any animals are seriously
injured by any of the disturbances. Despite the species’ sensitivity to blasting, displaced
individuals typically began returning to the haulout within minutes or hours of the disturbance,
indicating that they were not displaced from the study area or very far from it (this study;
Demarchi et al. 1998). The fact that Race Rocks is not a rookery for this species means that the
risks of pup abandonment or trampling due to blast-caused disturbances (e.g., stampedes) are
very low. Considering the foregoing and the status information discussed in section 6.2.5, no
significant adverse effects stemming from single or cumulative disturbance types on the regional
population of this species are expected to originate in or immediately adjacent to the study area.

7 CONCLUSIONS
The fact that Race Rocks provides highly suitable habitat for marine birds and pinnipeds is
indisputable. However, the Northern Sea Lion (COSEWIC, Special Concern; Conservation Data
Centre, Red Listed) is the only species that could be reasonably expected to pose any local
conservation concerns at Race Rocks at present. The black oystercatcher (COSEWIC, Not
Listed; Conservation Data Centre, Yellow Listed) might become a concern in the future at Race
Rocks due to the relatively low number of breeding pairs in the province.

Marine birds and pinnipeds at Race Rocks are exposed to a number of different disturbance
stimuli that alter normal behaviour patterns. The fact that human activities disturb wildlife does
not in itself provide a basis to ban such activities. Indeed, if that were the case, no people or
boats would be permitted in the Race Rocks Ecological Reserve without authorization. If
disturbances have no consequences for the population, or even if the population consequences are sustainable, restricting human activities for the sake of preventing disturbance is likely to have negative social and other consequences that are out of proportion to the impacts that are being avoided or mitigated.
According to the findings of this study,
no significant adverse effects stemming from single or
cumulative disturbance types on the regional populations of any species of marine bird or
pinniped at Race Rocks Ecological Reserve are expected to presently originate in, or
immediately adjacent to, the study area.
This is consistent with Holst and Greene (2003), who
concluded that, despite eliciting behavioural responses, noisy military training exercises in
California only had minor, short-term, and localized, effects on pinnipeds, with no consequences
for the pinniped populations.

.15. During the study, we observed three dead harbour seals, one dead northern sea lion, and two California sea lions with potentially life-threatening internal injuries. Both California sea lions were emaciated and exhibited lethargic, abnormal behaviours. A number (<20) of other sea lions were observed with various anthropogenic materials (e.g., nets, rope and other closed-loop materials, fishing gear) around their heads, necks or torsos, or in the case of fishing gear, hanging from their mouths. While some of those animals would likely die from their entanglement, none appeared to be near-death when we observed them. One subadult male northern elephant seal was severely cut up, but was observed several months later, mostly healed. One male California sea lion had a severe injury to one front flipper. Several northern sea lion males were observed with what appeared to be non-life- threatening dermal wounds (i.e., torn or missing skin) on their chests.

Return to Part 1

Return to Part 2

Proceed to References

Proceed to Appendices

 

Effects of natural and Human-caused Disturbances on Marine Birds and Pinnipeds at Race Rocks, British Columbia

Prepared forDepartment of National Defence
Canadian Forces Base Esquimalt
Victoria, BC &
Public Works & Government Services Canada
Pacific Region Victoria, BC
Prepared by Mike W. Demarchi (M.Sc. R.P.Bio.) and Michael D. Bentley
LGL Limited
environmental research associates
9768 Second Street Sidney, BC V8L 3Y8

Cover photo: northern sea lions hauled out in Race Rocks Ecological Reserve, November 2003

EXECUTIVE SUMMARY

On behalf of the Department of National Defence and Public Works & Government Services Canada, LGL Limited conducted a 14-month assessment of natural and human-caused factors with potential to affect key species of marine birds and pinnipeds at Race Rocks, British Columbia.

This study had the following objectives:

  • Summarize legislation with direct or indirect relevance for marine birds and mammals at Race Rocks.
  • Document whether the study area is being utilized for: a breeding area, a summering or wintering area, migration corridors, or staging areas by marine birds and pinnipeds.
  • Assess the affects of abiotic factors on the abundance of marine birds and pinnipeds in the study area.
  • Document and assess the effects of demolitions from the Whirl Bay Underwater Demolition Range, Bentinck Island Demolition Range, and Christopher Point Ordnance Disposal Range on marine birds and pinnipeds in the study area.
  • Document the effects of ecotour boats, other boats, aircraft, and pedestrian traffic in and near the study area on marine birds and pinnipeds.
  • Determine if abiotic factors such as air temperature, wind speed and direction, cloud cover, wave height, tide height ameliorate or amplify animal responses to anthropogenic disturbances.
  • Examine local populations of marine mammals and birds to assess the immediate and cumulative effects of local anthropogenic activities such as demolition training, ecotouring, pleasure boating, aircraft overflights, and human activities associated with operations on Great Race Rock.

During 6 October 2002 through 27 November 2003, 52 monitoring sessions were conducted. Many different weather conditions, sea conditions, and human-caused disturbance events were observed. Tidal conditions changed considerably on hourly, daily and seasonal timescales. Animal distributions in the study area were very aggregated and showed clear patterns of seasonal variation.

The Federal and Provincial status of key wildlife species, together with a brief species account of each were presented. Species that are common at Race Rocks use the area to fulfil life history needs including, non-breeding seasonal ranges, breeding habitat, migration/staging, and moulting. Important uses of the area by common species are summarized in the table below. Race Rocks provides highly suitable habitat, but with the possible exceptions of northern sea lions and black oystercatchers, the area is not likely providing any species with critical habitat (see page 55) at present.

Northern elephant seals were the least abundant pinniped throughout the study. Maximum daily counts ranged from 0 in the late autumn to 22 in the spring. Harbour seals were the most abundant pinniped throughout the study. Maximum daily counts ranged from 0 in the winter to 667 in the summer. California sea lions were the third most abundant pinniped during study. Maximum daily counts ranged from 0 in the winter and summer to 244 in late summer.

Northern sea lions were the second most abundant pinniped during the study. Maximum daily counts ranged from 0 in the summer to 555 in late autumn. Although the northern sea lion is Red Listed in British Columbia, all individuals that occur at Race Rocks are believed to be from the Eastern Stock. Whereas the Western Stock is listed as Endangered under the U.S. Marine Mammal Protection Act, the Eastern Stock is not.

Summary of the presence and important seasonal uses of Race Rocks made by species that commonly occur there.


Within seasons, weather and sea conditions affected the abundance of some bird and pinniped species, and the probability that a disturbance event would disturb some species to the point of displacement. Pinnipeds, and particularly northern sea lions, responded to blasting by increasing activity and leaving a haulout. Blast-caused disturbances are believed to be triggered by responses to sounds that “scare” rather than injure animals. Observations of the effects of blasting on birds and pinnipeds were made during days when at least one of the three ranges was active. Because so few observations were made during blasting in Whirl Bay (4 days) and on Christopher Point (1 day), the value of any inference made from those data is limited. None of the data we collected suggested that blasting in Whirl Bay had any adverse effects on bird or pinniped behaviour in the study area. Blasting monitored on Christopher Point occurred at a time (20 February 2003) when few birds and pinnipeds were in the study area. Blasting on Bentinck Island was the most frequent form of blast-related, potential disturbances observed. Pre-disturbance pinniped activity levels did not differ significantly among the types of monitoring days. There were no significant differences in mean activity levels of pinnipeds during samples throughout the day when no disturbance stimulus was attributed to the observation when the Bentinck Island Range was active compared to days when the range was inactive. Of all pinniped species that occur at Race Rocks, northern elephant seals were the most tolerant of any forms of disturbance we observed. Blasts on Bentinck Island were the only disturbance to consistently cause a noticeable increase in harbour seal activity for those animals that were not displaced. Blasts on Bentinck Island caused the most noticeable increases in California sea lion activity. Blasts on Bentinck Island and unknown disturbance stimuli had noticeable effects on California sea lion displacement from land to water. Blasts on Bentinck Island caused the greatest increase in northern sea lion activity and ecotour boats also caused an increase in activity levels; particularly on days when the Bentinck Island Range was active. Blasts on Bentinck Island and unknown disturbance stimuli had the most noticeable effects on northern sea lion displacement from land to water. Blasts on Bentinck Island caused at least 1 northern sea lion to move to the water 90.7% of the time the species was present on a haulout. Boats and pedestrians also displaced these animals. Despite the northern sea lion’s sensitivity to blasting, displaced individuals typically began returning to the haulout within minutes or hours of the disturbance, indicating that they were not displaced from the study area or very far from it. Pedestrians displaced seals, sea lions and gulls from Great Race Rock.

Pedestrian-caused disturbances typically involved: intentional clearing northern elephant seals off the boat launch; incidental displacement of harbour seals, incidental displacement of California sea lions, and to a lesser extent, northern sea lions; and incidental displacement of gulls. Overflights by raptors such as bald eagles were the most consistent (93.7% of events recorded) disturbance that caused some animals (in this case, primarily gulls) to take flight or enter the water. Very low numbers of aircraft passed over or near the monitored area, causing little or no apparent disturbance to wildlife. The Coast Guard helicopter might be an exception.

Kayakers were rare in the monitored area. Boats operated by LBPC were observed regularly throughout the monitored period, and together with the LGL boat, were the only boats to regularly dock at Race Rocks. LBPC and LGL boats displaced modest numbers of birds and pinnipeds from the dock area during most arrivals and departure. Pleasure boats were observed throughout the monitored period, mainly in summer. Harbour seals, sea lions, and cormorants, were all displaced by pleasure boaters. Some poaching of fish and shellfish occurs by recreational fishermen and recreational scuba divers, respectively. Ecotour boats constituted the greatest amount of boat traffic in the monitored area, with

peak visitation rates during the height of the summer tourist season. Daily numbers of ecotour boats ranged from 0 to 43, with as many as nine present in the study area at the same time. Some ecotour boats were observed to displace harbour seals, sea lions, cormorants, and gulls, but most caused no observable effects. The fact that Race Rocks provides highly suitable habitat for marine birds and pinnipeds is indisputable. However, determining the extent to which Race Rocks provides important or critical habitat for any given species is not so straightforward. Northern Sea Lion (COSEWIC, Special Concern; Conservation Data Centre, Red Listed) is the only species that could be reasonably expected to pose any local conservation concerns at Race Rocks at present. The black oystercatcher (COSEWIC, Not Listed; Conservation Data Centre, Yellow Listed) might become a concern in the future at Race Rocks due to the relatively low number of breeding pairs in the province. Marine birds and pinnipeds at Race Rocks are exposed to a number of different disturbance stimuli that alter normal behaviour patterns. The fact that human activities disturb wildlife does not in itself provide a basis to ban such activities. Indeed, if that were the case, no people or boats would be permitted in the Race Rocks Ecological Reserve without authorization. If disturbances have no consequences for the population, or even if the population consequences are sustainable, restricting human activities for the sake of preventing disturbance is likely to have negative social and other consequences that are out of proportion to the impacts that are being avoided or mitigated.

By increasing animal activity and displacing animals from the land to the air and water, humans exert adverse effects on marine birds and pinnipeds at Race Rocks. However, no significant adverse effects stemming from single or cumulative disturbance types on the regional populations of any species of marine bird or pinniped at Race Rocks Ecological Reserve are expected to presently originate in, or immediately adjacent to, the study area.

ACKNOWLEDGEMENTS

Many people assisted with this study. We especially thank Duane Freeman (Department of National Defence, CFB Esquimalt, Formation Environment) and Andrew Smith (Public Works and Government Services Canada) for their leadership and assistance in conducting this important research. Duane Freeman and Tracy Cornforth (Formation Environment) provided constructive reviews of draft of this report. Rae-Ann Shaw (Public Works and Government Services Canada) provided important administrative assistance. Duane Freeman and his department staff reviewed a draft of this report. PO Rob Cantwell, PO Chris MacDonald, and PO Oliver provided important logistic support concerning training activities on Bentinck Island and Whirl Bay. ESO Al Carter provided information concerning Christopher Point. Rik Simmons, Don McLaren, and Debbie McKinnon (Province of BC) assisted with research permitting. Captain Terry Weber and Vivian Skinner (Canadian Coast Guard) provided access to the light tower. Phil Emery (Canadian Coast Guard) coordinated a staged helicopter landing. Angus Matthews, Garry Fletcher, and Mike and Carol Slater (Pearson College) provided logistical support on Great Race Rock. Peter Olesiuk (Department of Fisheries and Oceans) provided some information on pinnipeds. Gary Searing of LGL provided important assistance with the study proposal and reviewed a draft of this report. Steve Johnson reviewed portions of a draft of this report. Dorothy Baker of LGL Limited proofed draft of this report. Mike Demarchi, Steve Johnson and Sonya Meier supervised field activities. Michael Bentley, Karen Truman, Lucia Ferreira, Jim Ferguson, Virgil Hawkes, Dave Robichaud, Jason Smith, Andrew Davis, and Philina English assisted with data collection. All photographs were taken by the senior author, except where noted.

Suggested Citation: DEMARCHI, MW AND MD BENTLEY. 2004. Effects of natural and human-caused disturbances on marine birds and pinnipeds at Race Rocks, British Columbia. LGL Report EA1569. Prepared for Department of National Defence, Canadian Forces Base Esquimalt and Public Works and Government Services Canada. 103 p.

EXECUTIVE SUMMARY……………………………………………………………………………………………….i ACKNOWLEDGEMENTS……………………………………………………………………………………………..v CONTENTS………………………………………………………………………………………………………………vi
LIST OF TABLES……………………………………………………………………………………………………….viii
LIST OF FIGURES…………………………………………………………………………………………………….ix
LIST OF PHOTOS……………………………………………………………………………………………………..xi
LIST OF APPENDICES……………………………………………………………………………………………….xii

1 INTRODUCTION………………………………………………………………………………………………………1
1.1 STUDY OBJECTIVES……………………………………………………………………………………………1
2 RELEVANT LEGISLATION..………………………………………………………………………………………2
3 STUDY AREA AND VICINITY…………………………………………………………………………………….2
3.1 RACE ROCKS ECOLOGICAL RESERVE………………………………………………………………….2
3.2 MARINE TRAINING AND EXERCISE AREA WQ………………………………………………………….4
3.3 MARINE LIFE………………………………………………………………………………………………………7
3.3.1 Injury and Disturbance…………………………………………………………………………………………8
3.3.2 Species Accounts………………………………………………………………………………………………9
3.3.2.1 Brandt’s Cormorant (Not Listed; Red Listed)……………………………………………………………9
3.3.2.2 Double-crested Cormorant (Not at Risk; Blue Listed)…………………………………………………9
3.3.2.3 Pelagic Cormorant (pelagicus subspecies Not Listed; Red Listed – resplendens
…………subspecies Not Listed; Yellow Listed)……………………………………………………………………10
3.3.2.4 Bald Eagle (Not at Risk; Yellow listed)……………………………………………………………………10
3.3.2.5 Peregrine Falcon (anatum subspecies Threatened; Red Listed – pealei subspecies
………..Special Concern; Blue Listed)………………………………………………………………………………10
3.3.2.6 Black Oystercatcher (Not Listed; Yellow Listed)……………………………………………………….10
3.3.2.7 Black Turnstone (Not Listed; Yellow Listed)…………………………………………………………….10
3.3.2.8 Surfbird (Not Listed; Yellow Listed)……………………………………………………………………….11
3.3.2.9 Rock Sandpiper (Not Listed; Yellow Listed)……………………………………………………………..11
3.3.2.10 Heerman’s Gull (Not Listed; Yellow Listed)…………………………………………………………….11
3.3.2.11 California Gull (Not Listed; Blue Listed)…………………………………………………………………11
3.3.2.12 Herring Gull (Not Listed; Yellow Listed)………………………………………………………………..11
3.3.2.13 Thayer’s Gull (Not Listed; Yellow Listed)………………………………………………………………11
3.3.2.14 Western Gull (Not Listed; Yellow Listed)……………………………………………………………….11
3.3.2.15 Glaucous-winged Gull (Not Listed; Yellow Listed)……………………………………………………12
3.3.2.16 Pigeon Guillemot (Not Listed ;Yellow Listed)………………………………………………………….12
3.3.2.17 Northern Elephant Seal (Not at Risk; Yellow Listed)…………………………………………………13
3.3.2.18 Harbour Seal (Not at Risk; Yellow Listed)………………………………………………………………14
3.3.2.19 California Sea Lion (Not at Risk; Yellow Listed)………………………………………………………15
3.3.2.20 Northern Sea Lion (Special Concern; Red Listed)……………………………………………………16
3.3.2.21 Killer Whale (Northeast Pacific Southern Resident population: Endangered, Red Listed
……….Northeast Pacific Transient population: Threatened, Red Listed)……………………………………17

4 METHODS………………………………………………………………………………………………………………18

4.1 ANALYTICAL LIMITATIONS………………………………………………………………………………………19

. 4.2 DATA ANALYSES………………………………………………………………………………………………….20

5 RESULTS………………………………………………………………………………………………………………..20

5.1 CENSUS DATA………………………………………………………………………………………………………23

5.1.1 Cormorants………………………………………………………………………………………………………….25

5.1.2 Bald Eagle…………………………………………………………………………………………………………..26

5.1.3 Gulls………………………………………………………………………………………………………………….26

5.1.4 Northern Elephant Seal………………………………………………………………………………………….27

5.1.5 Harbour Seal………………………………………………………………………………………………………28

5.1.6 California Sea Lion……………………………………………………………………………………………….28

5.1.7 Northern Sea Lion………………………………………………………………………………………………..29

5.2 NATURAL AND HUMAN-CAUSED DISTURBANCES……………………………………………………….30

5.2.1 Effects of Disturbance on Animal Abundance from Morning to Afternoon……………………………30

5.2.1.1 Cormorants……………………………………………………………………………………………………….30

5.2.1.2 Gulls……………………………………………………………………………………………………………….30

5.2.1.3 Northern Elephant Seal……………………………………………………………………………………….32

5.2.1.4 Harbour Seal…………………………………………………………………………………………………….32

5.2.1.5 California Sea Lion……………………………………………………………………………………………..33

5.2.1.6 Northern Sea Lion……………………………………………………………………………………………….35

5.2.2 Effects of Discrete Disturbance Events on Animal Abundance and Behaviour..…………………….37

5.2.2.1 Effects on Harbour Seals……………………………………………………………………………………..40

5.2.2.2 Effects on California Sea Lions………………………………………………………………………………41

5.2.2.3 Effects on Northern Sea Lions………………………………………………………………………………..43

5.2.2.4 Disturbance by Killer Whales…………………………………………………………………………………45

5.2.2.5 Disturbance by Raptors………………………………………………………………………………………..45

5.2.2.6 Disturbance by Pedestrians and Domestic Animals…………………………………………………….46

5.2.2.7 Disturbance by Aircraft…………………………………………………………………………………………48

5.2.2.8 Disturbance by Boats…………………………………………………………………………………………..49

5.2.2.9 Disturbance by Blasting………………………………………………………………………………………..53

6 DISCUSSION..……………………………………………………………………………………………………………54

6.1 RELEVANT LEGISLATION…………………………………………………………………………………………54

6.2 USE OF RACE ROCKS BY MARINE BIRDS AND PINNIPEDS…………………………………………..55

6.2.1 Birds………………………………………………………………………………………………………………….56

6.2.2 Northern Elephant Seal…………………………………………………………………………………………..56

6.2.3 Harbour Seal………………………………………………………………………………………………………..56

6.2.4 California Sea Lion…………………………………………………………………………………………………57

6.2.5 Northern Sea Lion………………………………………………………………………………………………….58

6.3 EFFECTS OF NATURAL AND HUMAN-CAUSED DISTURBANCE……………………………………….58

6.3.1 Birds…………………………………………………………………………………………………………………..61

6.3.2 Northern Elephant Seal……………………………………………………………………………………………63

6.3.3 Harbour Seal…………………………………………………………………………………………………………63

6.3.4 California Sea Lion…………………………………………………………………………………………………..65

6.3.5 Northern Sea Lion……………………………………………………………………………………………………65

7 LITERATURE CITED……………………………………………………………………………………………………..69

. 8 APPENDICES..………………………………………………………………………………………………………….74

viii

LIST OF TABLES…………………………………………………………………………………………………………..Page
..

Table 1. Dates and active range status in WQ during 52 monitoring sessions at Race Rocks……………21

Table 2. Distribution (percent) of all observations of common species and groups in the Race Rocks study area during morning and afternoon censuses from October 2002 through November 2003……………………………………………………………………………………………………………………………..24

Table 3. Summary of the presence and important seasonal uses (shaded cells) of Race Rocks made by species that commonly occur there……………………………………………………………………………………………………….24

Table 4. Results of logistic regression analyses to detect the effect of, tide, swell height, and Bentinck Island demolitions on the relative change in numbers of animals in the Race Rocks census area in the afternoon versus morning periods from October 2002 through November 2003……………………………………………………………………………………………………………………………..31

Table 5. Results of logistic regression analyses to detect the effect of number of projects in a run, tide height, swell height, air temperature, wind speed, wind direction, sea state, cloud cover, precipitation class, and visibility class on animal displacement during demolition runs on Bentinck Island from October 2002 through November 200…31

Table 6. Results of one-way ANOVA tests* of pre-discrete disturbance activity levels by type of monitoring day regarding military training range activities…………………………………………………………………………………………….37

Table 7. Results of t-Tests for differences between mean daily activity levels of pinniped based on samples when no discrete disturbance stimulus was attributed to the sample during days when Bentinck Island was active compared to days when no blasting occurred there (refer to Table 1 for dates included)……………………………………….37

Table 8. Percent of potential disturbance events that caused birds to fly or birds/pinnipeds to enter
the water………………………………………………………………………………………………………………………..38

Table 9. Minimum, maximum, mean and standard deviation of the daily frequency of selected disturbance events as observed during 52 monitoring sessions at Race Rocks, BC spanning the period October 2002 through
November 2003 ………………………………………………………………………………………………………………..38

ix

LIST OF FIGURES

Page Figure 1. Map of southern Vancouver Island and eastern Juan de Fuca Strait………………………….3

Figure 2. Map of Sub-Areas within the study area……………………………………………………………………..4

Figure 3. Map of southern Vancouver Island and vicinity, showing Rocky Point, Race Rocks Ecological Reserve (within 20-fathom contour), and Military Training Area WQ (within circle)…………………………………………………………………………………………………………………………….6

Figure 4. Predicted tide heights at William Head during the study period………………………………………..22

Figure 5. Daily differences in predicted tide heights at William Head during the study period……………….22

Figure 6. Total numbers of cormorants on land in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon ) as observed from atop the light tower……………………………………………………25

Figure 7. Total numbers of bald eagles on land in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon ) as observed from atop the light tower……………………………………………………26

Figure 8. Total numbers of gulls on land in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon ) as observed from atop the light tower……………………………………………………………………27

Figure 9. Total numbers of northern elephant seals hauled out in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon ) as observed from atop the light tower. ……………………………………………………………………………………………………………………………………..27

Figure 10. Total numbers of harbour seals hauled out in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon ) as observed from atop the light tower…………………………………………………….28

Figure 11. Total numbers of California sea lions hauled out in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon ) as observed from atop the light tower ………………………………………29

Figure 12. Total numbers of northern sea lions hauled out in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon ) as observed from atop the light tower……………………………………………………..29

Figure 13. Boxplot summaries of daily changes in the abundance of gulls when Bentinck Island was inactive and when blasting occurred there, grouped by net change in swell condition in the afternoon versus morning peri ……32

Figure 14. Boxplot summaries of daily changes in the abundance of harbour seals when Bentinck Island was inactive and when blasting occurred there, grouped by net change in tide height in the afternoon versus morning peri…..33

Figure 15. Boxplot summaries of daily changes in the abundance of California sea lions when Bentinck Island was inactive and when blasting occurred there, grouped by net change in swell condition in the afternoon versus morning period…35

Figure 16. Boxplot summaries of daily changes in the abundance of Northern sea lions when Bentinck Island was inactive and when blasting occurred there, grouped by net change in swell condition in the afternoon versus morning period…36

Figure 17. Stacked line (cumulative total) chart of potential disturbance events (i.e., raptor, boat, pedestrian, and air traffic) during 52 monitoring sessions in the Race Rocks study area of from 6 October 2002 through 27 November 2003…………………………………………………………………………………………………………………..39

Figure 18. Number of blasts that occurred during each of the 52 monitoring sessions in the Race Rocks study area of from 6 October 2002 through 27 November 2003………………………………………………………………………….39

Figure 19. Activity levels of harbour seals at Race Rocks expressed as the mean values observed for each disturbance class on days when no blasting occurred (“No Range”), days when blasting occurred on Bentinck Island (“Bentinck”), and days when blasting occurred in Whirl Bay (“Whirl Bay”) only…………………………………………………………..40

Figure 20. Comparative changes in numbers of harbour seals in monitored sub-areas for selected potential disturbance types…………………………………………………………………………………………………………………………………41

Figure 21. Activity levels of California sea lions at Race Rocks expressed as the mean values observed for each disturbance class on days when no blasting occurred (“No Range”), days when blasting occurred on Bentinck Island (“Bentinck”), and days when blasting occurred in Whirl Bay (“Whirl Bay”) only……………………………………..42

Figure 22. Comparative changes in numbers of California sea lions in selected monitored areas for selected potential disturbance types………………………………………………………………………………………………………………….43

Figure 23. Activity levels of northern sea lions at Race Rocks expressed as the mean values observed for each disturbance class on days when no blasting occurred (“No Range”), days when blasting occurred on Bentinck Island (“Bentinck”), and days when blasting occurred in Whirl Bay (“Whirl Bay”) only………………………………………44

Figure 24. Comparative changes in numbers of northern sea lions in selected monitored areas for selected potential disturbance types………………………………………………………………………………………………………………….45

Figure 25. Relative distribution of Lester B. Pearson College boats observed in Race Rocks Ecological Reserve during monitoring sessions from October 2002 through November 2003……………………………………………………….50

Figure 26. Relative distribution of pleasure boats observed in Race Rocks Ecological Reserve during monitoring sessions from October 2002 through November 2003………………………………………………………………………………….51

Figure 27. Relative distribution of ecotour boats observed in Race Rocks Ecological Reserve during monitoring sessions from October 2002 through November 2003………………………………………………………………………………….53

Figure 28. Conceptual model of the hierarchical effects of exposing a wildlife species to a non- directly lethal visual or aural disturbance stimulus……………………………………………………………………………………………………….61

LIST OF PHOTOS

Page Photo 1. Aerial photo of Great Race Rock as viewed from the northwest………………………………..5

Photo 2. Adult glaucous-winged gull nesting on a grassy area of Great Race Rock………………………….12

Photo 3. Subadult male northern elephant seal………………………………………………………………………..13

Photo 4. Mother-pup pairs of harbour seals are commonly observed at Race Rocks during………………..14

Photo 5. Harbour seals haul out in abundance on intertidal portions of the study area………………………14

Photo 6. California sea lions hauled-out on Great Race Rock………………………………………………………15

Photo 7. Northern sea lions hauled out on Sub-Area 2-5 of Race Rocks…………………………………………16

Photo 8. Killer whales, such as this lone male, were infrequently observed in the study area. 7 August 2003….17

Photo 9. Example of tidal effect on the area of exposed land available for birds and pinnipeds……………. 23

Photo 10. Portion of a feeding flock of primarily gulls and cormorants, located approximately 2 km southeast of Race Rocks……………………………………………………………………………………………………………………………25

Photo 11. Example of how tide height affected haulout availability for harbour seals, including during the peak of their pupping season………………………………………………………………………………………………………………..34

Photo 12. An example of typical pinniped responses to blasting…………………………………………………..36

Photo 13. Raptors such as this adult bald eagle frequently disturbed cormorants and gulls in the study area…46

Photo 14. Students and staff from Lester B. Pearson College were frequent visitors to Great Race Rock…47

Photo 15. Approximately 200 harbour seals moved quickly from the shore of eastern Great Race Rock into the water immediately after being apparently startled by a high-pressure power washer being operated by a resident of the island………………………………………………………………………………………………………………………………47

Photo 16. Two tourists wander through an active glaucous-winged gull nesting area (Sub-Area H) on Great Race Rock; causing disturbance and risking egg destruction by trampling………………………………………………………..48

Photo 17. Most aircraft overflights did not cause animals to leave the rocks for the water or air. ……………49

Photo 18. Pleasure boat near a pod of killer whales moving north through Race Passage…………………….52

Photo 19. Ecotour boat traffic was common throughout the year, but particularly during summer. ………….52

LIST OF APPENDICES

Page Appendix 1. Legislation with direct or potential relevance to marine life at Race Rocks.. ……………74

Appendix 2. Data collected during monitoring sessions at Race Rocks…………………………………………..85

Appendix 3. Methods used for the analysis of data collected during animal censuses and activity sampling in the Race Rocks study area………………………………………………………………………………………………………………87

Appendix 4. Total numbers of pinnipeds, gulls, cormorants, and shorebirds in Race Rocks Ecological Reserve as counted from atop the light tower during each of the two daily censuses for the monitoring period 6 October 2002 through 27 November 2003……………………………………………………………………………………………………………..91

Appendix 5. Total numbers of birds in Race Rocks Ecological Reserve as counted from atop the light tower during each of the two daily censuses for the monitoring period 6 October 2002 through 27 November 2003……………………………………………………………………………………………………………………………….94

Appendix 6. Total number of potential disturbance events recorded in the monitored area during each monitoring day at Race Rocks, BC. ……………………………………………………………………………………………………………..99

Appendix 7. Sample sizes used to calculate mean activity rates (proportion of animals with heads up) of three pinniped species at Race Rocks, BC as a function of whether or not a demolition range (i.e., Bentinck Island, or Whirl Bay) was active and according to individual disturbance stimuli (primary) or lack thereof (none)…………………………101

Appendix 8. All dates and approximatea number of projects detonated on Bentinck Island from 11 July 2002 (the most recent blasting prior to the onset of this study) through 30 November 2003………………………………………102

Appendix 9. Number of ordnances detonated at Christopher Point Ordnance Disposal Range during the study period of October 2002 through November 2003 by date, ordnance type, and individual weight………………………….103

1 INTRODUCTION

Race Rocks is a provincial ecological reserve and has been proposed as a federal marine protected area. The area supports a diverse range of marine algae, marine invertebrates, fish, marine birds, and pinnipeds (seals and sea lions). Marine birds use Race Rocks for breeding and non-breeding purposes. Pinnipeds are of particular relevance to this study because they are large, conspicuous animals that have been the focus of concerns about the effects of local human disturbance. Harbour seals breed and haul out at Race Rocks, and northern elephant seals, California sea lions, and northern sea lions haul out there. Cetaceans transit the area intermittently.

A major portion of Race Rocks Ecological Reserve is contained within the Department of National Defence’s (DND) Military Training Area WQ; however no training activities actually occur within the Reserve. The effects of the demolition training and ordnance disposal activities in WQ were first studied by LGL Limited during 1997 and 1998 (Demarchi et al. 1998). Results of that study indicated that some pinnipeds at Race Rocks responded to ordinance explosions by increasing their activity levels and moving from haulouts to the water. It was also noted that other human uses in the study area (e.g., whale watching boats, pleasure boats, human activity on Great Race Rock, etc.) elicited similar reactions from birds and pinnipeds.

The initial study (Demarchi et al. 1998) was confined to a limited portion of the year and only on days when military exercises involving explosions occurred. Observations of the behavioural effects of non-military disturbances on marine life were opportunistically collected, but that study was not designed to assess impacts from non-military activities. The present study was designed to monitor the effects of natural environmental processes; military explosions; and non- military, human-caused (anthropogenic) disturbances on marine birds and pinnipeds at Race Rocks during a 14-month period.

The diversity of marine life at Race Rocks makes it a popular location for boaters, divers, recreational adventurers, students, and researchers. These activities have the potential to disturb marine life. In addition, the absence of substantial human settlements in the area facilitates the regular use of high explosives by DND. It is important to recognize that military exercises represent one type of many potential disturbances that occurs locally. Therefore, it is important to try to assess the response of marine birds and pinnipeds to explosions independent of other impacts and the potential impacts of explosions in addition to all other impacts (i.e., the cumulative impacts).

1.1 Study Objectives

This research focused on pinnipeds (seals and sea lions). However, selected species of marine birds were also monitored. This research was conducted under Park Use Permit #VI0210066. The objectives were to:

  • Summarize legislation with direct or indirect relevance for marine birds and mammals at Race Rocks.
  • Document whether the study area is being utilized for: a breeding area, a summering or wintering area, migration corridors, or staging areas by marine birds and pinnipeds.

2 LGL Limited

  • Assess the affects of natural factors on the abundance of marine birds and pinnipeds in the study area.
  • Document and assess the effects of demolitions from the Whirl Bay Underwater Demolition Range, Bentinck Island Demolition Range, and Christopher Point Ordnance Disposal Range on marine birds and pinnipeds in the study area.
  • Document the effects of ecotour boats, other boats, aircraft, and pedestrian traffic in and near the study area on marine birds and pinnipeds.
  • Determine if natural factors such as air temperature, wind speed and direction, cloud cover, wave height, tide height ameliorate or amplify animal responses to human- caused disturbances.
  • Examine local populations of marine mammals and birds to assess the immediate and cumulative effects of local human activities such as demolition training, ecotouring, pleasure boating, aircraft overflights, and human activities associated with operations on Great Race Rock.

2 RELEVANT LEGISLATION

Marine birds and mammals at and near Race Rocks are subject to a number of different legislative acts and their corresponding regulations. A summary of relevant legislation is presented in Appendix 1.

3 STUDY AREA AND VICINITY

3.1 Race Rocks Ecological Reserve

The study area is the exposed portion of Race Rocks Ecological Reserve, adjacent to Rocky Point on southern Vancouver Island (Figure 1; Figure 2). The Reserve is defined as the seabed and exposed land within the 20-fathom depth contour. Race Rocks is a complex composed of one island (Great Race Rock; 1.48 ha) and a number of smaller islets and reefs. Terrestrial vegetation occurs only on Great Race Rock, and consists of grasses and small forbs comprising both native and introduced species. Lester B. Pearson College of the Pacific (LBPC) operates several provincially owned buildings, including an ecoguardian (caretaker) residence, guest house, boat shed, tank room, crane shed, and diesel generator shed. Ancillary equipment operated by LBPC includes a concrete boat dock and launch, fixed crane, fuel pumping equipment, and diesel tanks. The Canadian Coast Guard leases a concrete helipad, light tower, and support infrastructure located on Great Race Rock (Photo 1). Great Race Rock was added to the Ecological Reserve in 2001.

Race Rocks Ecological Reserve is in the eastern reaches of Juan de Fuca Strait in the Nanaimo Lowland Ecosection of the Eastern Vancouver Island Ecoregion of the Georgia Depression Ecoprovince (Demarchi et al. 1990). The climate of the study area is mild, being moderated by the Pacific Ocean. Tides are semidiurnal1 with strong diurnal inequality.2 Predicted values ranged from -0.11 to 3.06 m at William Head (located within 5 km north of Race Rocks) during the study period (Hopper 2002). Tidal flow through Race Passage can reach 7 knots. More comprehensive information on the biophysical features of Race Rocks Ecological Reserve can be found in Wright and Pringle (2001) and Province of BC (2002).


  • 1 Having typically two high and two low values every 24 hours.
    2 Also referred to as declinational inequality, it is the difference in height of the two high waters or of the two low waters of each tidal day.

Figure 2. Map of Sub-Areas within the study area. Great Race Rock was divided into Sub-Areas A through H (excluding E, which was not designated). Outlying areas were initially assigned numbers for each discrete rock, but were subsequently grouped into areas that were usually contiguous or that appeared so from the light tower on Great Race Rock (also shown)

. 3.2 Marine Training and Exercise Area WQ

Canadian Forces Base (CFB) Esquimalt conducts military training in the use of explosives in Marine Training and Exercise Area WQ (“Whiskey Quebec”; Figure 3). WQ is located near Rocky Point on southern Vancouver Island, British Columbia and owned by the Federal Government, Department of National Defence. WQ is a circular range that covers 1075 ha of terrestrial and marine environments, and incorporates a portion of Race Rocks Ecological Reserve, although no military training occurs in the Reserve itself.

Two ranges in WQ are used for training in ordnance-based demolitions: the Whirl Bay Underwater Demolition Range, and the Bentinck Island Demolition Range. Surplus and outdated ordnance is disposed in WQ by Canadian Forces Ammunition Depot (CFAD) Rocky Point at the Christopher Point Ordnance Disposal Range. Training activities in WQ are under the control of

LGL Limited 5

Base Operations, CFB, Esquimalt. All training exercises in WQ must be approved by Base Operations as outlined in the CFB Esquimalt Range Standing Orders. Ordnance disposal activities are overseen by CFAD Rocky Point.

Page 6:

Photo 1. Aerial photo of Great Race Rock as viewed from the northwest. Observations during this study were made from atop the light tower. Photo by Heath Moffat; used with permission from Lester B. Pearson College.

The Whirl Bay Underwater Demolition Range is used primarily by Fleet Diving Unit (Pacific) (FDU(P)) for underwater demolitions and ordnance testing using charges of C4 plastique3 ranging from 0.5 to 10 kg. The part of Whirl Bay that is used for demolitions is a shallow (<15 m) cove approximately 300 m across and 190 m from the entrance to the demolition beach. The substrate of the cove consists of basaltic bedrock overlain by clay, mud, silt, and sand with several patches of kelp scattered over the bottom. Shoreline habitats consist of basaltic rock formations and pebbly and sandy beaches.

  • 3 C4 plastique is a white, plastic, high-explosive made of RDX (Royal Demolition Explosive; a.k.a. cyclonite or hexogen; chemical name, trinitrotriazine) and an inert plastic binder. C4 is more powerful than TNT (trinitrotoluene) and is suitable for cutting metal and timber and for blasting concrete because of its high detonation velocity and plasticity. PETN (pentaerythritol tetranitrate) is used as a detonation cord for C4 charges.


Figure 3. Map of southern Vancouver Island and vicinity, showing Rocky Point, Race Rocks Ecological Reserve (within 20-fathom contour), and Military Training Area WQ (within circle). General locations of demolitions and ordnance disposal are indicated.

In October 2002, a bubble curtain was deployed in Whirl Bay as a means of attenuating the shock pulse of underwater detonations, and thereby reducing the adverse effects on underwater marine life. Prior to the actual demolitions, several “Thunderflashes” are detonated to scare marine life away from the blast area. The demolition area is >2 km from the nearest haulout in Race Rocks and is separated from Race Rocks by Christopher Point.

Bentinck Island (31 ha) is separated from Rocky Point by Eemdyk Passage—a shallow channel that supports an abundance of bull kelp. Harbour seals are common in Eemdyk Passage, but other pinnipeds have not been seen there (pers. obs.). The mid-section of Bentinck Island is a low-lying, treeless area of pebble beaches connecting three larger areas which support stands of mature Douglas fir.

The Bentinck Island Demolition Range is used primarily by Canadian Forces Fleet School (Seamanship Division) for above-water beach-clearing and obstacle-creation exercises involving metal cutting and the displacement and demolition of rocks and logs. The range is licensed for a maximum individual charge size of 2.3 kg (CFB Esquimalt Range Standing Orders). Petty Officer (PO) B. Phillips (pers. comm. 1996) indicated that in the past, the range has been typically used for 56 days per year, but demolitions do not occur on all such days. “Project” is the term used to describe an individual demolition (e.g., timber cut, steel cut, beach clearing, etc.) involving a single explosive charge. “Run” is the term used to describe a set of projects that are simultaneously set up by different teams of trainees. As of 1998, projects in the same run are detonated at a minimum interval of 2 minutes. There was no minimum interval between projects prior to 1998. During a typical day on which the range is active, two to four runs of one to three projects each (i.e., 4-12 blasts per day) are conducted. A typical project consists of one to four slabs4 of C4. Demolition training is conducted on the central beaches of Bentinck Island, with a line-of-sight to Race Rocks. The nearest haulout used by seals and sea lions in the Race Rocks Reserve is approximately 1.2 km away.

Surplus ordnance is disposed by way of high-order5 detonation at the Christopher Point Demolition (disposal) Area. Disposal activities are conducted on an as-required basis, and unlike the other ranges in WQ, activities on the Christopher Point Range are not tied to training schedules. Under federal authorization, the disposal area is licensed for a maximum single explosive charge size of 13.6 kg. Twelve such charges are permitted per day. However, as a means of mitigating public concerns about blast noise, a voluntary reduction6 in maximum charge size to 6.8 kg was adopted in 1987 (Explosives Safety Officer [ESO] A. Carter, pers. comm. 1997). Use of the range varies greatly among years, but anywhere from one to 12 high- order detonations on up to 25 days (7%) of the year is a reasonable approximation (ESO A. Carter, pers. comm. 1997). The disposal site is situated in a clearing characterized by Scotch broom and mowed grass. The range has a line-of-sight to Race Rocks. The nearest haulout used by seals and sea lions in Race Rocks Ecological Reserve is approximately 2.0 km away.

3.3 Marine Life

The marine habitats of southern Vancouver Island support a diverse array of invertebrates, fish, birds, and mammals. The terrestrial and marine habitats near Rocky Point are important breeding areas, summering areas, wintering areas, migration corridors, or staging areas for approximately 200 species of birds (Campbell et al. 1990a, b; 1997; 2001). The most conspicuous mammals are the pinnipeds (seals and sea lions). The harbour seal (Phoca vitulina) is the only pinniped species that breeds in the study area. The abundance of California sea lions (Zalophus californianus) and northern sea lions7 (Eumetopias jubatus) is greatest outside the May-July breeding season. Northern elephant seals (Mirounga angustirostris) have occurred at Race Rocks in recent years. Single northern fur seals (Callorhinus ursinus) have been reported, but sightings of this species are very infrequent. Cetaceans such as killer whales (Orcinus orca) and gray whales (Eschrichtius robustus) are occasionally observed in or near the study area, but do not occur there with the same predictability as pinnipeds.

4 A slab of C4 weights 0.500 kg
5 That is, they are exploded rather than disposed of by non-explosive means.
6 Some larger charges, such as the Mark-7 anti-tank mines (each containing 8.6 kg of TNT) are occasionally detonated.
7 Also known as the Steller (or Steller’s) sea lion.

3.3.1 Injury and Disturbance
The detonation of solid, nitrogen-based high explosives like C4 and PETN (pentaerythritol tetranitrate) entails rapid oxidation-reduction reactions that transform solids into gasses such as N2, CO2, H2O, and O2. Other products include intense heat, bright light, a shock wave, and noise. Because the detonation of C4 is so rapid, a shock wave (also known as a pressure pulse) is propagated along the front of the expanding gasses. Such shock waves have the highest peak pressure levels of any man-made source (Richardson et al. 1995). The impulse level (i.e., strength) of a shock wave decays rapidly with increasing distance from the source. As air rapidly expands behind the pressure wave, sound energy (noise; the proverbial boom) is generated. Depending on the peak impulse level of a pressure wave, distance from the source, and species- specific susceptibility among other factors, shock waves can injure or kill animals (Demarchi et al. 1998). Regarding detonations at the three sites in WQ, such extreme effects are not believed to be relevant to marine birds and mammals at Race Rocks because of the small charge sizes (i.e., &Mac178;10 kg) and the distances (i.e., >1 km) involved (Demarchi et al. 1998). Sound energy, at sufficient levels, can temporarily or permanently injure an animal’s hearing organs. It is unlikely that animals at Race Rocks experience temporary or permanent effects to hearing. Blast-caused disturbances of marine birds and mammals at Race Rocks are believed to be triggered by responses to sounds that “scare” rather than injure animals; though it is possible that some animals sense and respond to pressure waves also (Demarchi et al. 1998). As indicated by Richardson et al. (1995), published data on all aspects of the effects of explosions on marine mammals are extremely limited.

Ecotourism is a thriving venture both worldwide and on southern Vancouver Island. The tourism industry in Victoria is significant to the local economy. Local entrepreneurs have been quick to capitalize on a large population of tourists and residents willing to pay to see whales and other marine mammals such as sea lions. Obee (1998) presents a general discussion of the rapid growth of this business and the negative effects it can have on local marine life. Wildlife viewing by the pleasure-boating general public can also disturb wildlife. Tershy et al. (1997) describe how humans affected a reserve used by marine birds and pinnipeds. As observed by Demarchi et al. (1998), ecotourism and other human activities at Race Rocks are capable of disturbing birds and pinnipeds. In terms of the responses by individual animals, such disturbances are comparable to those caused by blasts. However, when taken in the perspective of an entire year, disturbances by boats and humans could out-weigh disturbances caused by explosions because the former disturbances are more frequent. Whereas DND activities occur infrequently during the course of a year, boats and other human-caused disturbances occur almost daily when weather conditions are suitable. Disturbances of birds and pinnipeds by boats and human activities on Race Rocks can be viewed as cumulative impacts on the species in question.

As reported by Demarchi et al. (1998), blasting often coincided with the presence of ecotourists and pleasure boaters. As recreational boat traffic at Race Rocks increases, the likelihood of such events coinciding is expected to increase. Consequently, an increase in the number of complaints to DND regarding the effects of blasting activities on marine mammals can be expected,

9 LGL Limited

(sentence missing in original copy??)

regardless of the degree to which any observed disturbances were caused or compounded by the presence of the boat and its occupants

8. 3.3.2 Species Accounts

The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) tracks the status of flora and fauna in Canada. Listing categories applicable to the species presented in this section are defined as:

  • •Endangered—A species facing imminent extirpation or extinction.
  • Threatened—A species likely to become endangered if limiting factors are not reversed.
  • Special Concern—A species of special concern because of characteristics that make it particularly sensitive to human activities or natural events.
  • Not at Risk—A species that has been evaluated and found to be not at risk.
  • Not Listed—A species for which there is no present need for evaluation.

In BC, flora and fauna are assessed for concerns about their conservation by the provincial Conservation Data Centre (CDC). Listing categories are as follows:

  • Red Listed—A species that is endangered or threatened with extirpation or extinction.
  • Blue Listed—A species that is sensitive or vulnerable to extirpation or extinction, but less so than Red-listed ones.
  • Yellow Listed—A species that is not at risk, but with a management emphasis in order to meet specific public demands.

The following accounts describe selected bird and mammal species that occur at Race Rocks. Current COSEWIC listings are followed by current CDC listings.

3.3.2.1 Brandt’s Cormorant (Not Listed; Red Listed)

Brandt’s cormorants are uncommon to abundant throughout south-coastal BC during the year. Several small breeding colonies exist in BC, and in 1987 three nests with young were found at Race Rocks (Campbell et al. 1990a). They are much more abundant near southern Vancouver Island from August to April (Gates 2001) when numerous birds arrive from breeding areas along the west coast of the United States. Brandt’s cormorants roost on Race Rocks and forage in the surrounding waters during autumn through spring.

3.3.2.2 Double-crested Cormorant (Not at Risk; Blue Listed) Double-crested cormorants are common residents of southern Vancouver Island, breeding mainly on islands in the Strait of Georgia (Gates 2001, Campbell et al. 1990a). The breeding population has been decreasing in BC in the last two decades (Fraser et al. 1999; Chatwin et al. 2002). Double-crested cormorants commonly rest on the Race Rocks islets and feed in the waters of the Ecological Reserve and surrounding area. The species is not known to breed at Race Rocks.

  • 8 A meeting discussing the present review of the Department of Fisheries and Oceans’ Marine Mammal Regulations was hosted by DFO at the Institute of Ocean Sciences in Sidney, B.C. on 29 January 2003. The majority of attendees were directly or indirectly affiliated with the marine ecotourism industry. When an audience member spoke of the need for the Marine Mammal Regulations to address the adverse effects of DND’s training exercises on marine life at Race Rocks, most of the audience applauded.

Editors note: We have linked some of the following species to the appropriate reference in the racerocks.com Taxonomy Files. That was not part of the original report.

3.3.2.3 Pelagic Cormorant (pelagicus subspecies Not Listed; Red Listed – resplendens subspecies Not Listed; Yellow Listed)

Two subspecies of pelagic cormorant occur in BC and both may occur at Race Rocks. The pelagicus subspecies nests north of Vancouver Island and in Alaska and is Red-listed due to a decline in numbers. It may occur at Race Rocks occasionally during the non-breeding season. The resplendens subspecies breeds in south-coastal BC including Race Rocks (Vermeer et al. 1989a). The number of pelagic cormorants nesting on Race Rocks varies from year to year with 120 counted by Vermeer et al. (1989a) in 1987 and 0 in 2000 (Chatwin et al. 2002). Pelagic cormorants use the rocks and islets of Race Rocks throughout the year for resting and the surrounding waters for feeding.

3.3.2.4 Bald Eagle (Not at Risk; Yellow listed)

Bald eagles are fairly common on southern Vancouver Island from September to mid-May. During the summer months many of them move north to areas where salmon are spawning and are uncommon locally during that time. Bald eagles usually build their nests in large trees close to water. They breed near Race Rocks along the shore of Vancouver Island, but not within Race Rocks Ecological Reserve. Bald eagles use Race Rocks Ecological Reserve mainly as a resting and feeding area where they forage on fish and gulls.

3.3.2.5 Peregrine Falcon (anatum subspecies Threatened; Red Listed – pealei subspecies Special Concern; Blue Listed)

Three subspecies of peregrine falcons occur in BC. Although all three probably occur at Race Rocks occasionally, the most likely and frequent is probably the Peale’s peregrine falcon. Peregrine falcons breed in small numbers throughout south-coastal BC. Peregrine falcons from other areas of the west coast migrate through and/or winter in the study area. Peregrine falcons hunt their main prey (other birds) frequently in Race Rocks Ecological Reserve. At times they rest or consume prey on the terrestrial portions of the Reserve, frequently perching on man-made structures on Great Race Rock or on higher portions of the rocky shorelines.

3.3.2.6 Black Oystercatcher (Not Listed; Yellow Listed) Black oystercatchers are common residents and breeders at rocky coastal shoreline areas of southern Vancouver Island (Gates 2001). Three pairs were counted on the islets of Race Rocks in 1987 (Vermeer et al. 1989b). It is reported by LBPC that up to six pairs nest on the islets (Race Rocks 2003). During the non-breeding season up to 40 or more birds aggregate at Race Rocks. In winter during daylight (high tide) hours they spend much of their time on Race Rocks resting and preening.

3.3.2.7 Black Turnstone (Not Listed; Yellow Listed) Black turnstones are common at marine shoreline habitats on southern Vancouver Island from August to mid-April (Gates 2001). They prefer rocky coastlines and are commonly seen on Race Rock islets feeding and resting.

3.3.2.8 Surfbird (Not Listed; Yellow Listed) Surfbirds are present in small numbers on the marine shoreline habitats of southern Vancouver Island from late July to April. They do not breed in the study area (Gates 2001). Small numbers feed and rest on Race Rocks during that time, with peak numbers in spring and fall during migration.

3.3.2.9 Rock Sandpiper (Not Listed; Yellow Listed) Race Rocks is one of the best places to see rock sandpipers in the Victoria area. This species is quite rare in the region occurring almost exclusively on the rocky shores of offshore islands and islets. Rock sandpipers are regular in small numbers on Race Rocks from late October to late May. They do not breed in the study area. The islets of Race Rocks Ecological Reserve are used for resting during high tide and feeding during lower tides.

3.3.2.10 Heerman’s Gull (Not Listed; Yellow Listed) Heerman’s gulls are common in south coastal BC from mid-July to the end of October when most of their population moves north along the Pacific coast from their Mexican breeding grounds. They are very rare at other times of the year and do not breed in BC (Gates 2001, Campbell et al. 1990b). Hundreds of Heerman’s gulls use the islets of Race Rocks for resting and the surrounding waters for feeding during their time in this area.

3.3.2.11 California Gull (Not Listed; Blue Listed) California gulls are common to abundant during their spring (March-April) and fall (July- October) migrations in the southern Vancouver Island area. They are quite rare at most other times of the year and do not breed in the study area (Gates 2001). They commonly feed in the water surrounding Race Rocks and rest on the islets during their stay in the area.

3.3.2.12 Herring Gull (Not Listed; Yellow Listed) Herring gulls are uncommon at southern Vancouver Island from September to April and rare during the rest of the year. This species is mainly an offshore gull in BC. Race Rocks is probably one of the better places to observe this species near shore and small numbers use the islets for resting and the surrounding waters for feeding mainly during the winter.

3.3.2.13 Thayer’s Gull (Not Listed; Yellow Listed) Thayer’s gulls are common winter visitors at southern Vancouver Island from about mid- September to March. They are not present or are very rare in the area from April to mid- September and do not breed in the area (Gates 2001). Very large numbers of Thayer’s gulls use Race Rocks during the fall and winter, resting on the islets and feeding in the surrounding waters.

3.3.2.14 Western Gull (Not Listed; Yellow Listed) Western gulls are uncommon to rare during most of the year near southern Vancouver Island (Gates 2001). This species nests along the Pacific coast of North America from Washington to California. At the northern edge of their range, hybridization with glaucous-winged gulls is frequent resulting in many hybrid birds that are impossible to classify to one species. Gulls that appear to be of pure western gull stock are uncommon to rare at Race Rocks Ecological Reserve throughout the year. They join the mixed-species gull flocks either resting on the islets or feeding in the surrounding water. Some of the gulls nesting at Race Rocks are probably hybrids.

3.3.2.15 Glaucous-winged Gull (Not Listed; Yellow Listed) Glaucous-winged gulls are the only species of gull nesting at Race Rocks (Photo 2) with up to 424 nests counted in 1989 (Vermeer et al. 1992). They are common all year throughout the region and their numbers have increased dramatically in the last two decades. Other than as a nesting colony, Race Rocks Ecological Reserve is used all year for resting on the islets and feeding in the surrounding water.

3.3.2.16 Pigeon Guillemot (Not Listed; Yellow Listed) Pigeon Guillemots are the only species of alcid that nests at Race Rocks. They are in the area year-round, but only use the land in Race Rocks during spring and summer. This migratory species resides in rocky coastal areas, and prefers to forage in shallow, inshore waters. Pigeon guillemots nest in rock crevices on the periphery of Great Race Rock. The first nesting record was in 1953 and published numbers of breeding pairs there range from 14 to 400 (Campbell et al. 1990b).

Photo 2. Adult glaucous-winged gull nesting on a grassy area of Great Race Rock. 25 May 2003.

LGL Limited 13

3.3.2.17 Northern Elephant Seal (Not at Risk; Yellow Listed)

The northern elephant seal (Photo 3) is a member of the family Phocidae—the true seals. Although near extinction at the beginning of the 20th century, legal protection of the species and its habitat has allowed it to recover. In 1991 there was an estimated population of 127,000 animals (Stewart and Huber 1993). This species is highly migratory, breeding primarily on islands in northern Mexico and central California and moving north after the breeding season. After breeding, most animals stay far offshore in deep water. Males move over the continental shelf as far north as the Gulf of Alaska and Aleutian Islands, while females tend to move westward into the open ocean (Stewart and Huber 1993).

Northern elephant seals can haul out at any time of the year, but Stewart and Huber (1993) note three seasonal peaks in abundance at haulouts. The first is in winter during the combined pupping and breeding season. The second is in late April and early May when adult females and subadults come ashore to moult. The third is in October when non-pregnant females, pups, yearlings, and subadults come ashore to moult.

Baird (1990) reported that northern elephant seals are sparsely, but widely distributed in British Columbian waters throughout the year and are usually seen singly. Race Rocks is one of the few spots in BC where elephant seals regularly haul out. The account by Cowan and Carl (1945) suggests that, at least up to the mid-20th century, northern elephant seals were not as common in BC as they are at present. Based on their size and general appearance, most animals using Race Rocks are adult females or subadults, although a few adult males also haul out there.

Photo 3. Subadult male northern elephant seal. Members of this species commonly hauled-out on and near the boat launch at Great Race Rock. They tolerated humans at very close distances, to the point of becoming a nuisance at times as they interfered with boat launchings and landings. This individual is moulting its brown fur, exposing its grey, scarred skin beneath. 26 June 2003.

3.3.2.18 Harbour Seal (Not at Risk; Yellow Listed)

The harbour seal (Photo 4; Photo 5) is a member of the family, Phocidae—the true seals. They are the most abundant and widespread pinniped in coastal waters of southern BC and the only one that breeds in the study area. They are non-migratory residents at Race Rocks and give birth (“pup”) on the islets. The pupping season of harbour seals varies regionally, with those in the study area giving birth during the months of June through September; peaking in late July (Bigg 1969). Harbour seal pups are highly precocial at birth and are reared in the water as well as on land (Riedman 1990). Pups are weaned at an age of 5-6 weeks. Harbour seals spend a considerable amount of time hauled-out on beaches, rocks, man-made structures, and islets, including the islets at Race Rocks. Numbers of harbour seals have increased dramatically in and near British Columbian waters after the species was afforded protection from hunting under Canadian and American laws (Olesiuk et al. 1990; Jeffries et al. 2003)

.

Photo 4. Mother-pup pairs of harbour seals are commonly observed at Race Rocks during summer. The species is present at Race Rocks year-round. Sub-Area G; 17 July 2003.

LGL Limited 15

3.3.2.19 California Sea Lion (Not at Risk; Yellow Listed)

The California sea lion (Photo 6) is a member of the eared seal family, Otariidae. California sea lions move north into the study area from breeding colonies in Mexico and California after each summer breeding season, then return south in the late winter and spring. Peak abundance in BC is between September and May. Most of the animals in BC are adult and subadult males but females are known to occur. The number of California sea lions using British Columbian coastal waters has increased substantially during the last century, and in particular, since 1980 (Bigg 1988a). Bigg (1988a) reported that California sea lions were not present on Race Rocks prior to 1965. Records from 1971 (summarized in Bigg 1988a) indicate a maximum of approximately 30 animals at Race Rocks. Since then, numbers have increased to several hundred animals at times. P. Olesiuk (pers. comm. 2002) indicated that California sea lions are expanding their non- breeding range northward within BC, but that little is known of this expansion due to limited monitoring of pinnipeds.

In recent years there has been a continued northward expansion of the species on both the east and west coasts of Vancouver Island (P. Olesiuk, pers. comm. 2002). A few radio tags deployed on California sea lions in the early 1990s revealed that while in BC waters, California sea lions are very mobile and do not remain in the same area (haulout) for extended periods (P. Olesiuk pers. comm. 2002). In BC, California sea lions appear to readily and rapidly shift their distributions in response to the movements of their main prey, salmon and herring (P. Olesiuk pers. comm. 2002). A northward shift in schools of adult herring during the mid-winter pre- spawning period has resulted in a concomitant shift in California sea lions. For example, they no longer occur in the same abundance at Harmac (near Nanaimo) as in the past, but greater numbers are now seen near Hornby Island to the north (P. Olesiuk pers. comm. 2002).

Photo 6. California sea lions hauled-out on Great Race Rock. The vast majority of California sea lions at Race Rocks are adult and subadult males. October 2002; (Photo: M. Bentley).

3.3.2.20 Northern Sea Lion (Special Concern; Red Listed)

The northern sea lion (Photo 7) is a member of family Otariidae (eared seals). The breeding range of this species is from California, along the Pacific coast to Alaska and northeast Asia. Two stocks are recognized: the Western Stock which ranges from Russia to the Gulf of Alaska; and an Eastern Stock which ranges from southeast Alaska to California. In BC between 1912 and 1968, thousands of northern sea lions were killed in a campaign to reduce the perceived conflict between this species and commercial fishermen. A review of historic data (Bigg 1988b) indicated that control programs and commercial harvests conducted in BC during 1912-1967 eradicated one breeding area and reduced numbers on the remaining rookeries to about 25-30% of peak levels observed in the early 20th century, prior to any large-scale culls. Numbers of northern sea lions on Race Rocks appear to have rebounded since the control program ended (Bigg 1988b). Presently there is considerable concern about conservation of the western stock because of a dramatic, unexplained decline since 1970 (Trites and Donnelly 2003). Conversely, the Eastern Stock (the one which occurs at Race Rocks) has exhibited a modest increase during this period (Bigg 1988a; Calkins et al. 1999). Despite this increase, in November 2003 COSEWIC upgraded this species’ listing from “Not at Risk” to “Special Concern” because there are only three breeding locations in BC, the species is sensitive to human disturbance while on land, the threat of acute oil spills, and unexplained declines in other populations to the north and west of BC .

The closest rookeries to Race Rocks are on the Scott Islands off northern Vancouver Island (Bigg 1988b; Loughlin et al. 1984). Northern sea lions migrate into the study area where they spend a considerable amount of time hauled-out on traditional beaches, rocks, and islets. Bigg (1988b) identified Race Rocks as a haulout site used by northern sea lions during their nonbreeding season, with peak abundance occurring during September through May. All sexes and age-classes (except newborn pups) of northern sea lions occur on Race Rocks.

Photo 7. Northern sea lions hauled out on Sub-Area 2-5 of Race Rocks. That area was commonly used by both sexes and all age classes. Photo date: 20 November 2003.

3.3.2.21 Killer Whale (Northeast Pacific Southern Resident population: Endangered, Red Listed – Northeast Pacific Transient population: Threatened, Red Listed) Killer whales (Photo 8) are large members of the family Delphinidae that occur in arctic, temperate, and tropical waters of the world’s oceans. Two different populations occur in and near the study area: residents (which typically forage on fish—namely salmon) and transients (which typically forage on pinnipeds). The terms resident and transient do not accurately denote the movement patterns of each population (references in Baird 2001b) and members of either population can occur in the study area at any time of the year. They are infrequent visitors to Race Rocks Ecological Reserve, seldom spending more than a few minutes in it when they do occur there (this study). Baird and Dill (1994, cited in Calambokidis and Baird 1994) reported that killer whales take “large numbers’ of harbour seals at Race Rocks, but such behaviour was never observed during the present study or that by Demarchi et al. (1998)

. Since 1960, the Southern Resident population of about 96 in 1967, declined to a low of 67 in 1971, then rose to about 100 individuals in 1995 (Baird 2001b). By 2001 the population had declined to 789, qualifying it as an endangered and “depleted stock” under the U.S. Marine Mammal Protection Act (Krahn et al. 2002). Much less is known of the local transient population.

Photo 8. Killer whales, such as this lone male, were infrequently observed in the study area. 7 August 2003.
9 The 2003 population estimate by the Washington-based Center for Whale Research
(http://www.whaleresearch.com/thecenter/southern.html) was 83.

4 METHODS

The methodology employed in this study was based on that used during a similar study conducted in 1997 and 1998 (Demarchi et al. 1998). Race Rocks was accessed by an inflatable boat launched from Rocky Point. Monitoring days were selected to represent a sample of weekday and weekend conditions. Two or three observers recorded data in four different Microsoft Access 2002 databases using a hand-held Comapq iPAQ computer running Visual CE v6.1. Binoculars (8-10x) and tripod-mounted spotting scopes (20-60x) were used to assist with animal identification. In addition to the information presented below, additional information on data collection is presented in Appendix 2.

The first database concerned weather. Weather conditions were measured using on-site meteorological equipment (windspeed in knots and direction in degrees off true north) operated by the Coast Guard or by visual estimates (all others). As animal responses to disturbance may vary with time of day, cloud cover, wind speed, wind direction, wave height, swell condition, and tide height, weather parameters were measured in the morning and at the end of the day, and whenever notable changes in conditions occurred throughout the day. Tidal data were obtained for William Head (123° 32.0′ W, 48° 20.0′ N) using the computer program WXtide32 v2.7 (Hopper 2002). William Head is within 5 km to the north of Race Rocks.

The second database contained counts of bird and pinniped species in the study area. Those data provided information on how numbers of animals in the study area changed during daily and seasonal timescales. Birds and pinnipeds were censused twice (morning and afternoon). Only animals that were supported by terrestrial features (i.e., islands, islets, rocks, man-made structures, etc.) within one of the sub-areas (see Figure 2) were counted because of the difficulties in seeing animals in the water or counting birds in the air. Further, only animals visible from the tower were counted. Some animals were hidden from view, but in our opinion, based on our familiarity with the study area viewed from different boat-based vantages, the vast majority (>90%) of individuals were visible from the tower. Densely crowded pinnipeds also obscured the view of some animals. Considering these visibility biases, counts were likely lower than the actual number of animals within the Reserve.

The third database involved sweep counts of the numbers and behaviours of animals in selected sub-areas. These data facilitated an assessment of the effects of disturbance on bird and on pinniped behaviour and numbers by facilitating comparisons between pre- and post-disturbance conditions. These counts were made approximately every 30-60 minutes during the observation period, together with additional counts made immediately prior to, and within a few minutes following, blasting or the closest approach by people, boats, or aircraft. Two visible measures of disturbance are: 1) the change in body position (i.e., activity level; head-down or head-up of pinnipeds10), and 2) the change in numbers of pinnipeds on the haulouts and birds on hard surfaces. During samples of activity levels, we noted whether a disturbance stimulus was present or had occurred (e.g., if an ecotour boat was situated such that the passengers were focusing on the animals in the selected sub-area; or if a blast had just occurred). Multiple stimuli were recorded if they occurred simultaneously. Observations on the visible effects (or lack thereof) of a given stimulus were also noted as comments for each record.

10 It is acknowledged that sea lions sometimes rest in a head-up position, but in our experience at Race Rocks, the proportion of such animals is in the vast minority.

The fourth database tracked potential disturbance events. Because the nature of disturbances from sources other than blasting by DND were unpredictable both spatially and temporally, it was important to track such disturbances in the vicinity of marine animals. To that end, a 250 m by 250 m grid was superimposed on a map of the study area. Grid cells entered by each disturbance stimuli were recorded, as well as the time at which the disturbance entered and left the study area. Cells were recorded a maximum of one time per individual disturbance factor even if the factor temporarily left then re-entered the same cell.

Field sampling began 6 October 2002 and ended 27 November 2003. Where possible, days were scheduled to coincide with explosive training or demolition activities by DND. The dates and exact timing of explosions were coordinated with DND personnel. Up-to-the-minute reports on blast activities were monitored via VHF radio or cellular phone. “Non-training” days were scheduled to document responses to other sources of disturbance such as whale watching tours, pleasure craft, recreational dive boats, aircraft, and other types of human disturbance.

4.1 Analytical Limitations

Data analyses are complicated by several factors with implications for the application of statistical inference to the study’s results:

  1. The study was conducted at a single (unreplicated) site. Consequently, data from one or more control sites (i.e., a site similar in every way to Race Rocks, but without any disturbances) are not available for comparison. Further, military activities, ecotourism, and other human activities have been occurring near or at Race Rocks for many years and no baseline (pre-disturbance) data from Race Rocks are available for comparison.
  2. . Because the occurrence of disturbance events was not under the investigators’ control, observations of disturbance were opportunistic. Considering this and the point above, the study does not represent a true scientific experiment.
  3. . Extrapolating our results to days when we did not monitor the area is not straightforward. With the exception of LBPC and DND activities, our monitoring sessions are believed to approximate a random sample of days with the potential disturbances to which animals in Race Rocks Ecological Reserve are subjected. However, because our monitoring schedule was communicated in advance to LBPC staff, it is not known whether or not they altered any of their activities at Race Rocks in response to our presence. Further, in the interests of increasing our sample sizes of blast-related disturbances, days when Bentinck Island was active were sampled disproportionately more often than if our sampling had been random.
  4. . Because residual effects of disturbance can persist for hours or more, sample records are not independent because repeated samples from the same animals are taken during the course of a day. For example, if a disturbance occurs at time = t and animals move to the water, a sample of animal numbers and activity taken at time = t + 1 is likely to differ from a subsequent sample taken under the scenario where no disturbance had occurred previously. Sample values averaged during the course of a day are more appropriate foruse in statistical testing than individual values obtained from repeated observations of the same animals on the same day.
  5. Dependent response variables (i.e., activity and number of individuals visible in the study area) are not exclusively affected by human-caused disturbance events. Animal activity and departure from a haulout occur naturally and are potentially affected by many independent variables such as: time of year, time of day, weather, sea state, tide height, local prey availability, time since feeding, interspecific interactions, intraspecific interactions, behavioural differences among individuals, animal body condition, animal migration, and interactions between these variables. As a result, determining when changes in animal activity or numbers are in response to human-caused disturbances monitored by this study is not straight-forward because of confounding effects. An even greater challenge is to determine what degree of human-caused change in activity level or numbers of animals constitutes a significant, adverse biological effect (see Demarchi 2002).
  6. Total counts allow inferences about changes in total numbers of animals in the study area, but the absence of a sample of radio-tagged animals restricts conclusions regarding the extent to which any given disturbance results in temporary or permanent abandonment of Race Rocks Ecological Reserve by a portion of the population.
  7. For the most part, differences between the numbers of each pinniped species observed during each pair of daily censuses reflect animals moving on or off the haulouts. However, these values cannot be interpreted strictly as animals moving on or off a haulout because some animals simply moved in and out of view while remaining on the haulout. This is particularly true of northern elephant seals.
  8. It was not possible to visually monitor all sub-areas simultaneously during area-wide disturbances such as blasts. Therefore, the proportion of disturbances that actually caused animals to leave the land in the study area could be biased downward. It was usually possible to track individual boats and people to determine whether a decrease in subsequent counts was in response to disturbance or just a natural occurrence.

4.2 Data Analyses

Detailed descriptions of analyses based on census and activity sample data are presented in Appendix 3.

5 RESULTS

During the period 6 October 2002 through 27 November 2003, 52 monitoring sessions were conducted (Table 1). With the exception of two full days and one partial day when fog precluded accurate counts, monitoring was conducted as planned. On two other occasions, the trip to Race Rocks was cancelled due to extreme weather conditions. A wide range of weather conditions occurred during monitoring sessions, from sunny and clear to gale- and storm-force winds and rain storms. Observations were made under a wide range of tide heights and swell conditions.

Although much of the land in the Race Rocks complex is exposed at even the highest tides, the amount of exposed land available for resting birds and pinnipeds varied considerably as a function of tide height. Note that no attempt was made to quantify the total area available for resting at any given time. A strong seasonal pattern was observed for tide heights and daily timing, both as observed in the field and as calculated (Hopper 2002). The highest tides were observed during monitoring sessions in November through March (Figure 4). Storms were also more common at that time of year, causing swells and wind-waves that further decreased the availability of resting areas or shortened the duration intertidal areas were exposed during the day (Photo 9). The November-March period was also characterized by a tendency for tides in the late afternoon (near the time when the second daily census was conducted) to be lower than those in the morning (when the first daily census was conducted; Figure 5). The remainder of the year followed the opposite pattern. Tidal variation measured on an hourly scale was sufficient to strongly affect the availability of land for resting birds and pinnipeds—especially harbour seals. Other pinnipeds were not so visibly affected.

Table 1. Dates and active range status in WQ during 52 monitoring sessions at Race Rocks. For a summary of dates when the Bentinck Island range was active refer to Appendix 8.

Monitoring Date Active Range Monitoring Date Active Range
06-Oct-02a none 02-May-03 Bentinck
07-Oct-02 Bentinck 12-May-03a -none
10-Oct-02 Bentinck 25-May-03a none
17-Oct-02a none 05-Jun-03a none
24-Oct-02 b Bentinck 13-Jun-03a none
30-Oct-02a none 19-Jun-03 Bentinck
08-Nov-02 Bentinck 26-Jun-03 c none
15-Nov-02 none 05-Jul-03a none
22-Nov-02a none 17-Jul-03 none
02-Dec-02 Whirl Bay 27-Jul-03 none
05-Dec-02 Bentinck&Whirl Bay 07-Aug-03 none
16-Dec-02a none 15-Aug-03 none
31-Dec-02a none 23-Aug-03 none
17-Jan-03a none 02-Sep-03 none
20-Jan-03 Whirl Bay 12-Sep-03 none
23-Jan-03 Whirl Bay 18-Sep-03 none
30-Jan-03 Bentinck 25-Sep-03a none
10-Feb-03a none 02-Oct-03b none
20-Feb-03 Bentinck&
Christopher Point
09-Oct-03 Bentinck
06-Mar-03a none 20-Oct-03a none
14-Mar-03 none 27-Oct-03 Bentinck
20-Mar-03 none 06-Nov-03a none
27-Mar-03 none 13-Nov-03a none
10-Apr-03 none 20-Nov-03 Bentinck
16-Apr-03a none none 21-Nov-03 Bentinck
01-May-03Bentinck Bentinck 27-Nov-03a none
a. Days when no blasting occurred as used for comparative purposes to days when blasting occurred on at least Bentinck Island
b. Thick fog precluded complete censuses in both morning and afternoon
c. Thick fog precluded a census in the afternoon
Figure 4. Predicted tide heights at William Head during the study period. Data represent daily values (i.e.,maximum, minimum, and mean) for hourly tide height data from 07:00 through 18:00 (n=427). Source: computed using Hopper (2002). These values do not include effects of weather on tide height.

Figure 5. Daily differences in predicted tide heights at William Head during the study period. Data represent the difference in tide height at 18:00 versus 07:00 (n=427). For example, differences >0 indicate an increase in tide height. Source: computed using Hopper (2002). These values do not include effects of weather on tide height.
Photo 9. Example of tidal effect on the area of exposed land available for birds and pinnipeds. The black outline
approximates the exposed area in the 21 November view. Conditions on 21 November 2003 were exacerbated by a
southerly swell. Both photographs are centered on Sub-Area 2-5, taken from atop the light tower at Race Rocks (see
Appendix 2). Predicted tide heights for William Head (Hopper 2002).

5.1 Census Data
Total numbers of pinnipeds, gulls, cormorants, and shorebirds counted in each of the two daily
censuses of the study area are summarized in Appendix 4. Appendix 5 summarizes the total
numbers of all bird species counted on land in each of the two daily censuses. Mammals in the
water and birds in the air or water were not counted. Pinnipeds, cormorants, gulls, and bald
eagles are treated separately below. In addition to the species documented in Appendix 4, we
observed a single adult brown pelican during two separate monitoring sessions (16 December
2002; 20 February 2003) and two adult northern fulmars on 9 October 2003.

Animal distributions in the study area were very aggregated (Table 2). Northern elephant seals
were observed primarily on Sub-Area 2-5 and on Great Race Rock (Sub-Areas A&D) (refer to
Figure 2 for sub-area locations). Harbour seals were the only species to occur in every area, with
Sub-Area 15-25 receiving the most use. California sea lions occurred in most areas, with peak
numbers occurring in Sub-Area A on Great Race Rock. Northern sea lions also used most areas,
but the greatest use was made of Sub-Area 2-5. Gulls and shorebirds were most abundant onTable 3. Summary of the presence and important seasonal uses (shaded cells) of Race Rocks made by species that
commonly occur there.

SPECIES ……. present
year round
Breeding Migration
Staging.
Wintering… Summering…. Moulting…
Northern Elephant Seal
Harbour Seal
California Sea Lion
Northern Sea Lion
Brandt’s Cormorant
Double-crested Cormorant
Pelagic Cormorant
Harlequin Duck
Bald Eagle
Peregrine Falcon
Black Oystercatcher
Black Turnstone
Surfbird
Rock Sandpiper
Heermann’s Gull
California Gull
Herring Gull
Thayer’s Gull
Glaucous-winged Gull
Pigeon Guillemot
5.1.1 Cormorants
Three species of cormorant were observed (Appendix 5). The most abundant by far was Brandt’s
cormorant. With the exception of three active nests in 1987 (Campbell et al. 1990a), Brandt’s
cormorants are non-breeding visitors. The peaks in cormorant abundance during the late autumn
and winter are due to an influx of this species (Figure 6). The next most abundant cormorant was
the double-crested cormorant. It too does not breed in the study area. The least abundant was the
pelagic cormorant. It is the only species known to regularly breed in the study area (typically on
the west side of Great Race Rock out of view from the tower), but no active nests were observed
during our brief attempts to view them from a boat during the breeding season in 2003.
Maximum daily counts of all cormorants combined ranged from 0 in the summer to
approximately 1200 in mid-autumn (Figure 6). There was no consistent pattern in the difference
between census counts in the morning and in the afternoon. On most days during autumn and
winter, numbers in the area frequently fluctuated greatly as birds moved between Race Rocks
and feeding areas in Juan de Fuca Strait (Photo 10).
Figure 6. Total numbers of cormorants on land in Race Rocks Ecological Reserve on each of 2 daily censuses (1=morning; 2=afternoon) as observed from atop the light tower. Monitored days when the Bentinck Island demolition range was active are indicated by vertical lines.
Photo 10. Portion of a feeding flock of primarily gulls and cormorants, located approximately 2 km southeast of
Race Rocks. Such flocks were commonly observed during autumn and winter, indicating the presence and
availability of abundant food sources. Gulls and cormorants at Race Rocks typically flew to and from such events
during the course of the day. 6 November 2003.
5.1.2 Bald Eagle
The abundance of bald eagles at Race Rocks exhibited a strong seasonal peak with most birds
present between early January and mid-March (Figure 7). Maximum daily counts ranged from 0
to 20. They were observed to prey upon gulls occasionally, but most observations of feeding
birds involved them capturing live fish; presumably adult herring. The comparative lack of bald
eagles at other times of the year reflect the facts that they do not nest in Race Rocks Ecological
Reserve, and that the abundance of food sources (e.g., salmon, eulachon, herring) is greater at
other locations.

Figure 7. Total numbers of bald eagles on land in Race Rocks Ecological Reserve on each of 2 daily censuses
(1=morning; 2=afternoon) as observed from atop the light tower. Monitored days when the Bentinck Island
demolition range was active are indicated by vertical lines.

5.1.3 Gulls
Eight species of gull were observed during the census counts (Appendix 5). The most abundant
by far was Thayer’s gull. This species breeds in the arctic, but winters in the study area; hence
the large peaks in gull abundance during the late autumn and winter (Figure 8). The next most
abundant was the glaucous-winged gull. It was the only species present year-round and the only
one observed to breed in the study area. Maximum daily counts of all gulls combined ranged
from 39 in the late winter to approximately 9000 in late autumn (Figure 8). There was no
consistent pattern in the difference between census counts in the morning and in the afternoon.
On most days during autumn and winter, numbers in the area fluctuated greatly and repeatedly as
birds moved between Race Rocks and nearby feeding areas in Juan de Fuca Strait.

Glaucous-winged gulls were observed to breed in the grassy areas of Great Race Rock (see
Photo 1). Breeding behaviour (copulating) was first noted on 2 May 2003. By 25 May, some
birds had initiated incubation, while others continued to court. The first chicks were observed on
5 July. Broods of 2-3 chicks were typical. On 15 August, juveniles were first observed taking
“practice” flights. On 2 September, all juveniles were flying except for three chicks from a clutch
that hatched much later than the rest. The peak counts of glaucous-winged gull chicks were made
on 7 August when 77 were counted in the morning and 63 in the afternoon. We did not attempt
to quantify chick mortality, but as many as six carcasses were observed at one time.

)

5.1.4 Northern Elephant Seal
Northern elephant seals were the least abundant pinniped throughout the study. Maximum daily
counts ranged from 0 in the late autumn to 22 in the spring (Figure 9). There were no consistent
patterns in the difference between census counts in the morning and in the afternoon. The
maximum differences between any pair of daily surveys (n=49 pairs) were +12 and -5 animals
and the median daily difference was 0. Sex and age class data were not recorded for all animals,
so only general conclusions can be made. Based on size and general appearance, adult females
and subadult males were the most abundant. A few adult males were observed, but no pups were
sighted. The peak in abundance during spring 2003 corresponds to the time of year when adult
females and juveniles haul out to moult their fur (Stewart and Huber 1993).

5.1.5 Harbour Seal
Harbour seals were the most abundant pinniped throughout the study. Maximum daily counts
ranged from 0 in the winter to 667 in the summer (Figure 10). The peak in numbers during
summer corresponds to the breeding and moulting seasons. There were predictable differences
between census counts in the morning and in the afternoon. In winter when tides tended to be
lower during the afternoon compared to the morning, afternoon counts of harbour seals tended to
be higher. Conversely, fewer harbour seals in the afternoons during June through October
corresponded to higher tides at that time (Figure 4). The effects of tide on harbour seals are
explored further in section 5.2.1.4. The maximum differences between any pair of daily surveys
(n=49 pairs) were +167 and -472 animals, the median daily difference was -30. Sex and age class
data were not recorded for all animals, so only general conclusions can be made. Based on size
and general appearance, both sexes and all age classes were present. Pupping activity was most
apparent during the month of July. On 17 July 2003 we witnessed a birth in Sub-Area F on Great
Race Rock. The pup was born at 14:25, began nursing at 15:35 and began swimming at 16:30 as
the tide rose to where it was lying. The highest number of pups recorded on a single census was
27 on 27 July 2003.

Figure 10. Total numbers of harbour seals hauled out in Race Rocks Ecological Reserve on each of 2 daily censuses
(1=morning; 2=afternoon) as observed from atop the light tower. Monitored days when the Bentinck Island
demolition range was active are indicated by vertical lines.

5.1.6 California Sea Lion
California sea lions were the third most abundant pinniped during the study. Maximum daily
counts ranged from 0 in the winter and summer to 244 in late summer (Figure 11). There was no
consistent pattern in the difference between census counts in the morning and in the afternoon.
The maximum differences between any pair of daily surveys (n=49 pairs) were +43 and -43
animals, the median daily difference was -1. Sex and age class data were not recorded, but based
on size and general appearance, the vast majority of individuals were adult males. The peaks in
abundance observed during: (1) autumn 2002 and late summer-early autumn 2003, and (2) spring
2003, correspond to the times of year when animals are moving north into, then south out of
British Columbian waters, respectively. It is not clear what movement patterns the peak during
December 2002 might have represented.

Figure 11. Total numbers of California sea lions hauled out in Race Rocks Ecological Reserve on each of 2 daily
censuses (1=morning; 2=afternoon ) as observed from atop the light tower. Monitored days when the Bentinck
Island demolition range was active are indicated by vertical lines.

5.1.7 Northern Sea Lion
Northern sea lions were the second most abundant pinniped during the study. Maximum daily counts
ranged from 0 in the summer to 555 in late autumn (Figure 12). Except for some days when blasting
on Bentinck Island occurred, total numbers of northern sea lions were typically higher during the
afternoon than in the morning (see section 5.2.1.6). The maximum differences between any pair of
daily surveys (n=49 pairs) were +279 and -100 animals, the median daily difference was 0. Sex and
age class data were not recorded, but based on size and general appearance, both sexes and all age
classes were present during the autumn and winter; the few animals present in April 2003 were large
males. The peaks in abundance observed during late autumn and winter both years correspond to the
time of year when animals are moving away from breeding colonies. It is not clear what proportion
of the animals at Race Rocks are from breeding colonies such as those off northern Vancouver
Island versus those from colonies to the south in California and Oregon. In any event, all individuals
that occur at Race Rocks are believed to be from the non-endangered, Eastern Stock.

Figure 12. Total numbers of northern sea lions hauled out in Race Rocks Ecological Reserve on each of 2 daily
censuses (1=morning; 2=afternoon ) as observed from atop the light tower. Monitored days when the Bentinck
Island demolition range was active are indicated by vertical lines.

5.2 Natural and Human-Caused Disturbances
Effects of factors that potentially disturb birds and pinnipeds at Race Rocks are divided into two
categories, treated separately under sections 5.2.1 and 5.2.2:

  • 1. Effects on animal abundance caused by factors operating over the course of a monitored
    day. These include a mix of natural and human-caused factors such as environmental
    factors, whether or not military ranges were active, and the extent of range activity.
    2. Effects on animal behaviour and abundance caused by factors operating within a
    monitored day. These include a mix of discrete factors that are natural and human-caused
    in origin. They include predators, boats, aircraft, pedestrians, foghorn, and military
    explosions.

5.2.1 Effects of Disturbance on Animal Abundance from Morning to Afternoon
5.2.1.1 Cormorants
According to logistic regression analysis, the relative abundance of cormorants during the day
was not significantly described by a model using the independent parameters of tide, swell
condition or activities on Bentinck Island (or a combination of these; all P >>0.050). Further,
none of the individual terms were significant within any of the models examined (all P >0.050).
A logistic regression model of the displacement responses of cormorants during demolition runs
on Bentinck Island was significant (Table 5). The model that provided the best fit to the data
consisted of the independent parameter air temperature, whereby higher air temperatures
decreased the probability of displacement.
5.2.1.2 Gulls
According to logistic regression analysis, the relative abundance of gulls during the day was best
predicted by a model with swell height as the lone term (P = 0.043; Table 4). None of the other
model terms were significant. A graphical depiction of the data partitioned by relative swell
condition on days with and without blasting is shown in Figure 13. From that chart it is apparent
that higher swell conditions in the afternoon tended to increase the abundance of gulls, and
seemingly more so on days when blasting occurred on Bentinck Island, but that interaction was
not significant (Table 5). Note, however, that some sample sizes are particularly small.

Table 4. Results of logistic regression analyses to detect the effect of tide, swell height, and Bentinck Island
demolitions on the relative change in numbers of animals in the Race Rocks census area in the afternoon versus
morning periods from October 2002 through November 2003. Refer to Table 1 for information on corresponding
dates. Dates when only the Whirl Bay Range was active are excluded. Whole Model Test indicates the overall
significance of the model; Lack of Fit indicates the significance of any lack of fit of the selected set of terms; Odds
Ratio indicates how the odds of animal displacement are affected by an increase in the model parameter. Odds ratios
>1 correspond to increased probability of higher numbers in the afternoon than in the morning. All models were
fitted with an intercept term (B0).

Table 5. Results of logistic regression analyses to detect the effect of number of projects in a run, tide height, swell
height, air temperature, wind speed, wind direction, sea state, cloud cover, precipitation class, and visibility class on
animal displacement during demolition runs on Bentinck Island from October 2002 through November 2003. Whole
Model Test indicates the overall significance of the model; Lack of Fit indicates the significance of any lack of fit of
the selected set of terms; Odds Ratio indicates how the odds of animal displacement are affected by an increase in
the model parameter. Odds ratios >1 correspond to increased probability of displacement. All models were fitted
with an intercept term (B0).

Figure 13. Boxplot summaries of daily changes in the abundance of gulls when Bentinck Island was inactive and
when blasting occurred there, grouped by net change in swell condition in the afternoon versus morning period.
Refer to Table 1 for information on corresponding dates. Dates when only the Whirl Bay Range was active are
excluded. Sample sizes are indicated.

None of the logistic regression models of the displacement responses of gulls during demolition
runs on Bentinck Island were significant (Table 5). This reflected the fact that blasts on Bentinck
Island rarely flushed gulls from the land surfaces of the study area (refer to section 5.2.2.9 for
further information).
5.2.1.3 Northern Elephant Seal
According to logistic regression analysis, the relative abundance of elephant seals during the day
was best predicted by a complex interaction term which involved the product of tide, swell and
Bentinck Island activities (P=0.028; Table 4). None of the other model terms were significant.
5.2.1.4 Harbour Seal
According to logistic regression analysis, the relative abundance of harbour seals during the day
was best predicted by a model with tide as the lone term (P=0.002; Table 4). None of the other
model terms were significant. A graphical depiction of the data partitioned by relative tide height
on days with and without blasting is shown in Figure 14. From that figure it is clear that the
greatest changes in abundance were decreases resulting from tidal effects. On days when the tide
was lower during the afternoon survey, there was also a tendency for numbers of seals to
increase on non-blasting days and decrease on blasting days, but according to logistic regression
analysis, this interaction was not significant. Flood tides regularly forced hundreds of harbour seals

into the water as haulouts were submerged (Photo 11).

Figure 14. Boxplot summaries of daily changes in the abundance of harbour seals when Bentinck Island was
inactive and when blasting occurred there, grouped by net change in tide height in the afternoon versus morning
period. Refer to Table 1 for information on corresponding dates. Dates when only the Whirl Bay Range was active
are excluded. Sample sizes are indicated.

A logistic regression model of the displacement responses of harbour seals during demolition
runs on Bentinck Island was significant (Table 5). The model which provided the best fit to the
data consisted of the independent terms of: number of projects in a run (higher numbers of
projects increased the probability of displacement); swell height (higher swell heights reduced
the probability of displacement); and air temperature (higher air temperatures increased the
probability of displacement).
5.2.1.5 California Sea Lion
Logistic regression showed that the relative abundance of California sea lions during the day was
best predicted by a model with swell height as the lone term (P=0.023; Table 4). None of the
other model terms were significant. A graphical depiction of the data partitioned by relative
swell condition on days with and without blasting is shown in Figure 15. From that chart it is
apparent that higher swell conditions in the afternoon tended to reduce the abundance of

California sea lions, but note that some sample sizes are small.

Photo 11. Example of how tide height affected haulout availability for harbour seals, including during the peak of
their pupping season. Net tidal difference of the sequence is (1.51 m – 0.52 m =) 0.99 m. Photos show time (hh:mm)
and number of harbour seals hauled out on a portion of Sub-Area F, as viewed from atop the light tower at Race
Rocks (see Appendix 2). Effects of wind-waves, swells, and human-caused disturbance were negligible. Predicted
tide heights for William Head (Hopper 2002). 17 July 2003.

Figure 15. Boxplot summaries of daily changes in the abundance of California sea lions when Bentinck Island was
inactive and when blasting occurred there, grouped by net change in swell condition in the afternoon versus morning
period. Refer to Table 1 for information on corresponding dates. Dates when only the Whirl Bay Range was active
are excluded. Sample sizes are indicated.

A logistic regression model of the displacement responses of California sea lions during
demolition runs on Bentinck Island was significant (Table 5). The model which provided the best
fit to the data consisted of the independent terms of: number of projects in a run (higher numbers
of projects increased the probability of displacement) and wind direction (wind directions from
the vicinity of Bentinck Island toward Race Rocks increased the probability of displacement).

5.2.1.6 Northern Sea Lion
According to logistic regression analysis, the relative abundance of northern sea lions during the
day was not significantly related to any model tested (Table 4). The best model (P=0.104) was
one built with swell height and Bentinck activity values. It suggested that blasting on Bentinck
Island might have significantly decreased the relative daily abundance of northern sea lions if
larger sample sizes were examined. A graphical depiction of the data partitioned by relative
swell condition on days with and without blasting is shown in Figure 16. From that chart it is
apparent that relative numbers of northern sea lions tended to be lower in the afternoons of days
when Bentinck Island was active, and especially on such days when swell conditions were
higher. Note that some sample sizes are small.

None of the logistic regression models of the displacement responses of northern sea lions during
demolition runs on Bentinck Island were significant (Table 5). This reflected the fact that blasts
on Bentinck Island caused displacement of 1 individual of this species in the vast majority of
observed instances (Photo 12; refer to section 5.2.2.9 for further information).

Figure 16. Boxplot summaries of daily changes in the abundance of Northern sea lions when Bentinck Island was
inactive and when blasting occurred there, grouped by net change in swell condition in the afternoon versus morning period. Refer to Table 1 for information on corresponding dates. Dates when only the Whirl Bay Range was active are excluded. Sample sizes are indicated.

1.Preblast (09:40:00)
(resting behaviour) 2. Immediately post-blast (09:42:10) (sea lions active and moving toward
water)
3. After third blast(09:50:00)
(only northern elephant seals remain)
Photo 12. An example of typical pinniped responses to blasting. Northern elephant seals, California sea lions and
northern sea lions in Sub-Area 2-5 (see Figure 2) on 2 May 2003. Times are shown.

5.2.2 Effects of Discrete Disturbance Events on Animal Abundance and Behaviour
Two main types of animal behaviour were monitored: (1) activity levels of pinnipeds on a
haulout, and (2) displacement from land to the air (birds) or water (birds and pinnipeds). Results
of one-way ANOVA testing for differences between the mean activity levels of animals at the
beginning of the day (i.e., prior to discrete disturbances), grouped by days with: (a) no blasting;
(b) blasting on Bentinck Island; and (c) blasting in Whirl Bay only are summarized in Table 6.
Pre-discrete disturbance pinniped activity levels did not differ significantly among the types of
monitoring days. There were no significant differences in mean activity levels of pinnipeds
during samples throughout the day when no discrete disturbance stimulus was attributed to the
observation when the Bentinck Island Range was active compared to days when that range was
inactive (Table 7).

Ecotour boat traffic levels did not differ among the types of monitoring days. Results of a t-Test
for differences between the numbers of ecotour boats observed in the study area during days
when Bentinck Island was active (mean = 4.4; n = 8) and the subset of days when the range was
inactive (refer to Table 1; mean = 6.4; n = 11) indicated no significant difference (P = 0.459).
A comprehensive summary of disturbance events is presented in Appendix 6. Table 8 and Figure
17 summarize disturbance events with potential to flush animals in the study area. The total
numbers of detonations in each of the three military ranges during monitored days are summarized in Figure 18. Summary statistics regarding the frequency of selected disturbance
events are presented in Table 9.
Table 8. Percent of potential disturbance events that caused birds to fly or birds/pinnipeds to enter the water. The total
number of times each potential disturbance event occurred during times when a given species/group was present in or
near a monitored sub-area is also given. Blank cells represent zero values. For example, of 139 potential disturbance
events involving pedestrians and harbour seals, displacement was recorded 4.3% of the time (i.e., 6 times).


Figure 17. Stacked line (cumulative total) chart of potential disturbance events (i.e., raptor, boat, pedestrian, and air traffic) during 52 monitoring sessions in the Race Rocks study area of from 6 October 2002 through 27 November 2003
.


Figure 18. Number of blasts that occurred during each of the 52 monitoring sessions in the Race Rocks study area of from 6 October 2002 through 27 November 2003. Zero values and blasts during non-monitoring days are not
plotted.

5.2.2.1 Effects on Harbour Seals
In the absence of any discrete disturbance attributed to a given sample of animal activity, mean
activity levels of harbour seals were &Mac178;19%, regardless of whether or not blasting occurred during
the day (see “None” in Figure 19). Except for blasts on Bentinck Island, mean activity levels
resulting from all other potential discrete disturbances were &Mac178;21%. Blasts on Bentinck Island
were the only discrete disturbance to consistently cause a noticeable increase in harbour seal
activity, with a mean activity level of 47% observed during samples taken immediately post-
blasting (Figure 19).

Figure 19. Activity levels of harbour seals at Race Rocks expressed as the mean values observed for each
disturbance class on days when no blasting occurred (“No Range”), days when blasting occurred on Bentinck Island
(“Bentinck”), and days when blasting occurred in Whirl Bay (“Whirl Bay”) only. Error bars denote +1 standard
deviation. Values are based on samples of >9 animals and >4 observations per disturbance class per category of
blasting. “None” represents samples taken when no disturbance stimulus was attributed to observations. Sample
sizes are presented in Appendix 7.

Figure 20 approximates the extent to which selected discrete disturbance stimuli (and absence
thereof) affected the abundance of hauled-out harbour seals in monitored sub-areas. Because not
all sub-areas were monitored, and because of limitations in the sampling procedures (see section
4.1) numbers represent relative, not absolute values. Further, the plotted values cannot be
interpreted as being solely a function of a given disturbance stimuli, as changes in animal
abundance occur in the absence of discrete effects (e.g., changes under the category “none”).
Pedestrians, blasts on Bentinck Island, and unknown disturbance stimuli had the most noticeable
effects on harbour seal displacement from land to water.

Figure 20. Comparative changes in numbers of harbour seals in monitored sub-areas for selected potential
disturbance types. Change was calculated as number of animals at time = (t+1) minus number of animals at time = t
(where the given disturbance occurred at time = t+1). Note that observations at time = t were not always
disturbance-free. Mean values () represent the aggregate mean of the daily mean change in numbers for individual
monitored areas by disturbance type. The upper limit of the vertical lines represents the maximum value of any
mean change for each disturbance type by individual area by day. The lower limit of the vertical lines represents the
minimum value of any mean change for each disturbance type by individual area by day. The net daily change (y-
axis on right side) represents the sum of the mean changes by disturbance type by monitored area by day. Sample
sizes, in parentheses, indicate the number of unique area-date combinations from which the data were generated.

5.2.2.2 Effects on California Sea Lions
In the absence of discrete disturbances, mean activity levels of California sea lions were &Mac178;33%
regardless of the status of a range on a given day (Figure 21). Of samples with no disturbance,
mean activity was lowest on days when no range was active, suggesting some residual effect of
blast-induced disturbance. During days when no range was active, a 12% increase in activity
(i.e., from 19% to 31%) was noted when 1 ecotour boat was recorded as the primary
disturbance stimuli compared to the situation when no disturbance was attributed to a sample.
Blasts on Bentinck Island caused the most noticeable increases in California sea lion activity,
with a mean activity level of 54% observed during samples taken immediately post-blasting.

Figure 21. Activity levels of California sea lions at Race Rocks expressed as the mean values observed for each
disturbance class on days when no blasting occurred (“No Range”), days when blasting occurred on Bentinck Island
(“Bentinck”), and days when blasting occurred in Whirl Bay (“Whirl Bay”) only. Error bars denote +1 standard
deviation. Values are based on samples on >9 animals and >4 observations per disturbance class per category of
blasting. “None” represents samples taken when no disturbance stimulus was attributed to observations. Sample
sizes are presented in Appendix 7.

Figure 22 approximates the extent to which selected disturbance stimuli (and absence thereof)
affected the abundance of California sea lions on monitored haulouts. Because not all areas were
monitored, and because of limitations in the sampling procedures (see section 4.1) numbers
represent relative, not absolute values. Further, the plotted values cannot be interpreted as being
solely a function of a given disturbance stimuli, as changes in animal abundance occur in the
absence of discrete disturbance effects (e.g., changes under the category “none”). Pedestrians,
pleasure boats, blasts on Bentinck Island, and unknown disturbance stimuli had the most
noticeable effects on California sea lion displacement from land to water.

Figure 22. Comparative changes in numbers of California sea lions in selected monitored areas for selected potential
disturbance types. Change was calculated as number of animals at time = (t+1) minus number of animals at time = t
(where the given disturbance occurred at time = t+1). Note that observations at time = t were not always
disturbance-free. Mean values () represent the aggregate mean of the daily mean change in numbers for individual
monitored areas by disturbance type. The upper limit of the vertical lines represents the maximum value of any
mean change for each disturbance type by individual area by day. The lower limit of the vertical lines represents the
minimum value of any mean change for each disturbance type by individual area by day. The net daily change (y-
axis on right side) represents the sum of the mean changes by disturbance type by monitored area by day. Sample
sizes, in parentheses, indicate the number of unique area-date combinations from which the data were generated.


5.2.2.3 Effects on Northern Sea Lions
In the absence of any disturbance, mean activity levels of northern sea lions were &Mac178;41%,
regardless of the status of a range on a given day (Figure 23). Of samples with no disturbance
stimulus, mean activity was highest on days when the Bentinck Island Range was active,
suggesting some residual effect of blast-induced disturbance. Of all disturbance stimuli, blasts on
Bentinck Island caused the greatest increase in northern sea lion activity, with a mean activity
level of 73% observed immediately post-blast. Ecotour boats caused an increase in activity
levels; particularly on days when the Bentinck Island Range was active.
Figure 24 approximates the extent to which selected disturbance stimuli (and absence thereof)
affected the abundance of northern sea lions on monitored haulouts. Because not all areas were

monitored, and because of limitations in the sampling procedures (see section 4.1) numbers
represent relative, not absolute values. Further, the plotted values cannot be interpreted as being
solely a function of a given disturbance stimuli, as changes in animal abundance occur in the
absence of discrete disturbance effects (e.g., changes under the category “none”). Blasts on
Bentinck Island and unknown disturbance stimuli had the most noticeable effects on northern sea
lion displacement from land to water.

Figure 23. Activity levels of northern sea lions at Race Rocks expressed as the mean values observed for each
disturbance class on days when no blasting occurred (“No Range”), days when blasting occurred on Bentinck Island
(“Bentinck”), and days when blasting occurred in Whirl Bay (“Whirl Bay”) only. Error bars denote +1 standard
deviation. Values are based on samples on >9 animals and >4 observations per disturbance class per category of
blasting. “None” represents samples taken when no disturbance stimulus was attributed to observations. Sample
sizes are presented in Appendix 7.


Figure 24. Comparative changes in numbers of northern sea lions in selected monitored areas for selected potential disturbance types. Change was calculated as number of animals at time = (t+1) minus number of animals at time = t (where the given disturbance occurred at time = t+1). Note that observations at time = t were not always
disturbance-free. Mean values () represent the aggregate mean of the daily mean change in numbers for individual
monitored areas by disturbance type. The upper limit of the vertical lines represents the maximum value of any
mean change for each disturbance type by individual area by day. The lower limit of the vertical lines represents the minimum value of any mean change for each disturbance type by individual area by day. The net change (y-axis on right side) represents the sum of the mean changes by disturbance type by monitored area by day. Sample sizes, in parentheses, indicate the number of unique area-date combinations from which the data were generated.

5.2.2.4 Disturbance by Killer Whales
Approximately 21 killer whales in 4 separate group sizes of 15, 4, 1, and 1 were observed in the
monitored area during the study. Many more were observed outside the Reserve. Pinnipeds, and
in particular, harbour seals, were vigilant while killer whales were present (from 4 to 15 min per
sighting), no pinnipeds were observed to leave a haulout in response to a whale’s presence

.
5.2.2.5 Disturbance by Raptors
Overflights by raptors such as bald eagles were the most consistent (93.7% of events recorded)
disturbance that caused some animals (in this case, primarily gulls) to take flight or enter the
water. Such disturbances were usually very brief and most gulls landed shortly after the raptor had passed. Most raptor disturbance events occurred from December through February when
bald eagles were at their peak abundance locally (Appendix 5, Figure 17, Photo 13). The adverse
effect of raptors on California sea lions depicted in Figure 22 was primary the result of the sea
lions’ response to the hundreds of gulls that were flushed by a red-tailed hawk. Prior to the
disturbance initiated by the hawk, several pedestrians were in the general vicinity. The extent to
which the pedestrians might have aggravated the sea lions’ response in that instance is not
known.


Photo 13. Raptors such as this adult bald eagle frequently disturbed cormorants and gulls in the study area. This bird
is feeding on a gull it captured. 20 November 2003.

Proceed to PART3
The following are reports done in later years :
MONITORING DEMOLITION TRAINING IMPACTS IN MILITARY TRAINING AREA WQ ON SEA LIONS IN THE RACE ROCKS ECOLOGICAL RESERVE, BRITISH COLUMBIA
PROGRESS REPORT
#1 REVISED
LGL, Dec 8, 2010
EFFECTIVENESS OF A FIVE-MINUTE DEMOLITION INTERVAL TO MITIGATE BLASTING NOISE IMPACTS IN MILITARY TRAINING AREA WQ ON SEA LIONS IN THE RACE ROCKS ECOLOGICAL RESERVE, BRITISH COLUMBIA,
LGL, Mar 2010
TEMPORAL SPACING OF DEMOLITIONS TO MITIGATE DEMOLITION TRAINING IMPACTS IN MILITARY TRAINING AREA WQ ON SEA LIONS IN THE RACE ROCKS ECOLOGICAL RESERVE, BRITISH COLUMBIA
LGL, Mar 23 2009

 

Lab on Primary Productivity of Pyramimonas


Lab on Primary Productivity of Pyramimonas

See the video on a discussion of the high tidepools and productivity

Background: (adapted from Vernier lab 23 of “Biology with Computers”)

Oxygen is vital to life. In the atmosphere, oxygen comprises over 20% of the available gases. In aquatic ecosystems, however, oxygen is scarce. To be useful to aquatic organisms, oxygen must be in the form of molecular oxygen, O2. The concentration of oxygen in water can be affected by many physical and biological factors. Respiration by plants and animals reduces oxygen concentrations, while the photosynthetic activity of plants increases it. In photosynthesis, carbon is assimilated into the biosphere and oxygen is made available, as follows:

6 H2O + 6 CO2(g) + energy = C6H12O6 + 6O2(g)

The rate of assimilation of carbon in water depends on the type and quantity of plants within the water. Primary productivity is the measure of this rate of carbon assimilation. As the above equation indicates, the production of oxygen can be used to monitor the primary productivity of an aquatic ecosystem.

One method of measuring the production of oxygen is the light and dark bottle method. In this method, a sample of water is placed into two bottles. One bottle is stored in the dark and the other in a lighted area. Only respiration can occur in the bottle stored in the dark. The decrease in dissolved oxygen (DO) in the dark bottle over time is a measure of the rate of respiration. Both photosynthesis and respiration can occur in the bottle exposed to light, however. The difference between the amount of oxygen produced through photosynthesis and that consumed through aerobic respiration is the net productivity. The difference in dissolved oxygen over time between the bottles stored in the light and in the dark is a measure of the total amount of oxygen produced by photosynthesis. The total amount of oxygen produced is called the gross productivity.

The productivity of an upper tidepool at Race Rocks, as with many aquatic environments, varies seasonally throughout the year. Rain washes down nitrogen and phosphates into the tidepool and increases the productivity. In a lake or river, human activities, such as fertilization of fields and the operation of sewage treatment facilities, can alter the natural balance of nitrogen and phosphates in water. In this lab, you will first learn the technique of using the Oxygen Probe to measure the primary productivity of a seawater sample, and then you will proceed to devise an experiment to quantify net and gross productivity of microalgae from an upper shore tidepool when you have manipulated a specific factor that may affect photosynthesis.

The identification and taxonomy of these organisms can be assisted by the internet site maintained at the University of Montreal by Charles O’Kelly. You should observe them under the microscope and describe their movements. See the Pyramimonas Index–U. of Montreal

 

Green single celled flagellated algae species from the Race Rocks Tidepools

OBJECTIVES: In this experiment, you will 1. Use a dissolved oxygen probe to determine the level of dissolved oxygen in a sample of sea water.

 2. Measure the rate of respiration in a water sample.

 3. Measure the net and gross productivity in a water sample.

 4.Design an experiment to compare the rate of productivity under two different environmental conditions.

MATERIALS:

Macintosh computer shallow pan
Serial Box Interface nitrogen enrichment solution
Vernier Dissolved Oxygen Probe phosphate enrichment solution
Data Logger( software-built in) scissors
two 1-mL pipettes siphon tube
aluminum foil or black plastic bag thermometer
BOD bottles

PROCEDURE:

This first procedure will be a practice run so that you can understand how the equipment and data logger work.

1.    Obtain a BOD bottle.

2.    The dissolved oxygen probe requires a 10 minute period to polarize before it can be used. Be sure it has warmed up sufficiently before use.

3.    Prepare the computer for data collection by opening EXP23.LXP from the Biology with Computers experiment files. Load the calibration file EXP23.CLB.

4.    Fill the BOD bottle with a sea-water sample from the jar provided.

To fill a BOD bottle

  • Obtain a siphon tube.
  • Insert the tube into the sea-water sample and fill the tube completely with water.
  • Pinch the tube (or use a tube clamp) to close off the siphon tube.
  • Place one end of the tube in the bottom of BOD bottle. Keep the other end in the water sample, well below the surface. Position the bottle lower than the water sample and above a shallow pan.
  • Siphon the water into the test tube. Fill the test tube until it overflows .Fill the BOD bottle completely to the top of the rim. Use the shallow pan to collect any water that spills over.
  • Replace the stopper on the BOD bottle. Be sure no air is in the bottle

5.  Measure and record the temperature of the water sample .

6. Before using the Oxygen Probe, Calibrate it according to the special directions provided by the instructor.

7. Remove the Dissolved Oxygen Probe from the storage bottle. Place the probe into the BOD bottles so that it is submerged half the depth of the water. Gently and continuously move the probe up and down a distance of about 1 cm in the tube. This allows water to move past the probe’s tip. Note: Do not agitate the water, or oxygen from the atmosphere will mix into the water and cause erroneous readings.

8. After 30 seconds, or when the dissolved oxygen reading stabilizes, record the DO reading .

9. Now you are ready to design an experiment to test some variable that affects productivity.

Processing the DATA

1.    Determine the respiration rate. To do this, subtract the DO in BOD Bottle 1(the initial DO value) from that of BOD bottle 2 (the dark bottle’s DO value).

2.    Determine the gross productivity in the BOD bottle. To do this, subtract the DO in the light bottle’s DO value from that of the dark test tube’s DO value.

3.    Determine the net productivity in each BOD bottle. To do this, subtract the DO in the light bottle’s DO value from that of the initial DO value .

THE PLAN FOR AN INVESTIGATION

Now that you understand the basics of recording Oxygen levels with an Oxygen Probe, I expect you to come up with an appropriate controlled experiment for the green algal water from the high tidepools at Race Rocks. You will have two periods to plan what you want to do and to carry out the investigation. You will probably need some extra time as well since the minimum time for Oxygen generation is about an hour.

Develop some hypotheses that you can then proceed to test using the technique.

You must provide a written proposal for approval before starting the actual experiment. Be sure to have this checked and initialled by the teacher before proceeding with the investigation.

Some broad hints and way-out ideas to consider:

1. There may be a connection between primary productivity and pH in a pond. See the video on the use of green ponds to provide sewage treatment.

2. Bottles of green algae hung at different levels in the ocean may provide different levels of productivity.( Or you may simulate this by different light intensities in the lab.

3.Turbidity or nutrient level may effect productivity.

4. Note the collection date of the green water sample on the storage jar: Fresh samples may differ in photosynthetic or respiration rates.

5. We have inorganic fertilizer available in the lab.

6. How much does temperature affect productivity and respiration?

7. From our preliminary measurements of the tidepools, we noticed that high salinity and low salinity were measured in pools that were clear or non-green on the upper intertidal.

8. The pools these samples come from are subjected to heavy rainfall at some times and salt water spray and even submersion at others. I wonder if the organisms and their ability to photosynthesize is affected? – right away— a half- hour later ??

9. If you are going to take a sample, be sure it has been covered with the dark bag for several hours before sampling, as it does not take very much time to saturate the water with oxygen.

10. Be creative: think of all the implications of photosynthesis and take advantage of this opportunity to do a controlled experiment on a specific variable.

11. If you have a good reason to re-sample from the pools, we may even be able to arrange it!

FOR FURTHER REFERENCE:

Race Rocks Transects : Sample

Tidal Levels
Procedures for Processing the Images
1998 Class Photo transects of PEG #15
North side of Great Race Rocks Island
Other transect images from different locations

BACKGROUND

The students and faculty of Lester B. Pearson College which is a member of the United World Colleges have used the ecological reserve and now the MPA of Race Rocks for studies of marine ecosystems, both subtidally and intertidally since1978. During that time a number of exercises have been developed to use in teaching ecological concepts in the International Baccalaureate Environmental Systems and Biology classes.

While using basic research techniques it has been possible to start to build up a library of information that can be more useful for determination of the effects of long term climatic changes or changes induced by humans, (anthropogenic). In addition this record may provide ideas to encourage others to apply the techniques to other ecosystems. In 1999 the Race Rocks Ecological Overview was added to help bring together the ecological information on Race Rocks.

NUMBERING SYSTEM

A numbering system had to be developed that reflected the concept that this was only one of many that could be referenced from this site if individuals from around the world were willing to collaborate with us in building the project.
LOCATION….PEG NUMBER…TRANSECT NUMBER….QUADRAT NUMBER..

A0………………….05………………………..01…………………………………..01………
Where:
A0 refers to the first site to be added to this WWW site
05 refers to the peg location ( we have 15 such locations permanently identified at the Race Rocks Ecological Reserve.)
01 refers to the first transect entered from this location.
01 refers to the first quadrat picture that you can access on this photographic strip.

SOME IDEAS FOR USE OF THESE TRANSECT PHOTOS

  • Quantify the distribution of organisms
  • Relate the distribution to the intertidal elevation
  • Find out how to capture these images
  • Use other technology to analyze the photos
  • Study the mussels in greater depth
  • Study other organisms from the transects in greater depth.
  • Students in environmental systems will use this as a source to prepare for investigations in the intertidal zone when we have the opportunity to do a field lab at the ecological reserve. The photo strips also could be used by those living far from an ocean shore to study the relationship between abiotic or physical factors and organism distribution. Also by noting the location of certain species, for instance the mussels, M. californianus and then seeing where they would fit on a tidal level chart for the area (using the Victoria Tide Tables) ,students could calculate the length of times for submergence and emergence of the species in a week, a month, or a year. In addition they could compare the conditions in the winter months, with the extreme low tides occurring in the night with the conditions in the summer months when the low tides occur every two weeks in the daytime. Students should be encouraged to discuss the results of their investigations and pose further questions about conditions in the intertidal zone. For a more in depth exercise on the Ecological Niche of organisms go here.
  • TIDAL LEVELS Since the location of organisms in the intertidal zone is partially determined by tidal levels, that is one of the essential measurements given with our transect images. It is important to understand that the levels given here are based on the Canadian tide tables
    Victoria Tide TablesThese are not calculated the same way as tables from the United States. To convert the elevations given here to conform to the US pattern in which 0.0 equals mean lower low water, subtract 0.8 meters from these Canadian readings.You may find further explanation on the operation of Tides in any marine Biology or Oceanography text. One that may be useful is:
    Seashore Life of the Northern Pacific Coast– by Eugene Kozloff, page 7-9.
  • For TIDAL Heights of Other LOCATIONS, use this link
  • THIS IS JUST A START!
    By looking here you might get a few ideas of how you can do some interesting investigations using these pictures. But don’t stop there, we would like you to collaborate with us by adding ideas and new transects to our list. It would be excellent if someone living on another ocean shore with different intertidal zonation patterns could supply a similar set of photographs for comparison.Go back to techniques for directions on how to contribute

Tidepool #2 at Race Rocks

This file has been started to present some of the information we have accumulated on the pool in order to stimulate students to raise further questions and devise problems that can be investigated at the pool. It is also intended to be part of a cumulative digital legacy that those examining the pool can pass on to future students. A characteristic of the pool that is significant is that it is deeper than most of the other pools and it provides good variations in stratification of temperature and salinity.

Some ideas to consider:
The stratification of Salinity and Temperature in this pool is quite distinct. More work could be done in gathering seasonal records of this. Also, the main organisms, harpacticoids are abundant in the late spring and summer. It may be interesting to identify their source of food, probably diatoms that form a thin layer on the walls. Since the pool only receives new salt water occasionally, temperatures can fluctuate. The pool is however usually shaded by the rock cliff to the South.

Tidepool # 1 – Near Peg 6

This file has been started to present some of the information we have accumulated on the pool in order to stimulate students to raise further questions and devise problems that can be investigated at the pool. It is also intended to be part of a cumulative digital legacy that those examining the pool can pass on to future students.

This pool is located beside Peg #6 and is one of the highest elevated tidepools of the set.

Tidepool Index

USE THIS INDEX INSTEAD

These pools are located 0n the West side of Great Race Rocks. They are located at slightly different elevations resulting in different abiotic factors in the pools and different life forms in the pools as well. Our students brave the elements to get some measurements in this video

Tidepool 1
Tidepool 2
Tidepool 3
Tidepool 4
Tidepool 5
Tidepool 6
Tidepool 7
Tidepool 8
Tidepool 9
not available
Tidepool 10
Tidepool 11  not available
Tidepool 12
Peg 5:
Tidepool 13
artificial

Ecological Equivalents Galapagos Islands vs. Race Rocks

BACKGROUND: As you encounter different ecosystems representing a wide range of ecological niches in different parts of the world, you will begin to notice that there are many examples of organisms which may not even be related which play the same role in the ecosystems of widely separated geographic areas. I came across several examples which may be considered “ecological equivalents” while spending a week aboard the vessel “Samba” in the Galapagos Islands in June 2003. Although separated by 47 degrees of latitude and thousands of miles, surprisingly there are several examples of ecological equivalents on the island archipelagos of Race Rocks and the Galapagos. Islands.

DEFINITION.…Ecological equivalents : species that use similar niches in different habitats or locations are called ecological equivalents .The evolution of life has resulted in general types of habitats and certain successful ways of exploiting the resources in those habitats. Parallel evolution has resulted in unrelated species that have similar niches in different environments.

ECOLOGICAL EQUIVALENTS : GALAPAGOS ISLANDS VS. RACE ROCKS

 

 

Underwater Transect at Race Rocks

The most difficult transects to do at Race Rocks Ecological reserve are those underwater. Through the years we have done a number of these, mostly in training sessions with the Pearson College Divers.  We experimented with various types of spools for laying out a line, types of weighted line, measuring tape, quadrat sizes, types of underwater paper on clipboards, types of pencils or writing devices  etc.  The best arrangement was using a 30- 50 metre long tape which could be attached to the peg on shore  and then taken out by the diver in a predetermined compass direction. The biggest problem other than the narrow window to get the work done was always the kelp cover, making the process very difficult in the later part of the year when the Nereocystis, (bull kelp) cover would make it impossible to access some areas.   The divers working in pairs would then proceed along one side of the line producing a record of the belt transect.  

Laura Verhegge and students of Pearson College doing an underwater transect off peg #1 at Race Rocks.

 


_____________________________________________________________

Return to the Contents page for Environmental modelling with Transects..