The Grand Sailboat Regatta

Weather

  • Visibility: 8 miles in the early morning, 15 later on
  • Wind: 15-20 knots East, then North, then West
  • Sky: foggy and overcast, then sunny, then overcast
  • Scattered raindrops throughout the day
  • Water: mostly calm, with swells in the afternoon

DSC_6437

Ecological

  • Maya and Tazi conducted 4 intertidal transects today.
  • Studying an intertidal transect involves measuring out a certain distance from a peg, and then documenting the different species found every 0.5 metre.
  • In some transects the 0.5 metres are measured by water elevation; in others simply by distance.
  • By comparing the species found in every zone of the transect with transect data from previous decades, you can see the change in intertidal ecosystems due to climate change.
  • We saw a California Sea Lion with the brand U374 and another with a tracker.
  • While most of the gull eggs all look the same, one particular egg is quite different.

Maintenance

  • Maya and I ran the fire pump in the morning.
  • This added a few inches to the cistern.
  • We removed the old Canadian flag and hoisted a fresh one.
  • Tazi and I removed some algae.
  • Ali whacked away at the thistles.
  • We cleaned the solar panels.

Boats

  • Over 150 sailboats from Victoria passed by Race Rocks in the late morning on their way towards the Western horizon.
  • Some of them started to return as late as 22:30.
  • The colours of their sales included: red, blue, white, fluorescent yellow, green, purple, black, orange, and many combinations of all of the above.
  • Some standouts included the Miles Davis sail and the Union Jack.
  • I couldn’t stop taking photos and ended up with dozens. Below is a selection of the best.
  • One coastguard zodiac and a search and rescue boat appeared to be accompanying the sailboats.
  • Several eco-tours came by, including one Eagle Wings tour that drove through the South Channel.
  • Passing through the South Channel is prohibited as the width is too narrow.

Transect Peg Locations on Great Race Rocks

Expand this map of Great Race Rocks in order to see the numbered pegs in red around the shoreline. Some of these pegs were intended as intertidal locators, and some as subtidal tethering pegs. The ones with question marks still need to be located to be sure.

Some of the  pegs were established pre-1980 and some were established after 2000.

centrelargeandislepegs
Peg 1: off west side of jetty end- subtidal
Peg 2: off point of bay west of jetty–subtidal
peg 3: further along north side– subtidal
peg 4: off base of cliff– subtidal (proved impractical because of high current)
peg 5: inter and subtidal
peg 5a:later installation- inter and subtidal
peg 5b: later installation-inter and subtidal
peg 6: for tidepool locator and intertidal and subtidal
peg 7: for subtidal minimal use
peg 8: for subtidal not used
peg 9: for subtidal not used
peg 9 : for subtidal not used
peg 10: for subtidal not used
peg 11: subtidal not used as too close to old outfall.
peg 12 inter and subtidal
peg 13: used for annual intertidal algae stratification lab exercise.
peg 14: subtidal- outer extreme North East corner.
peg 14b: inter and subtidal concrete mound with stainless steel hole for peg – inter and subtidal
peg 15: large boat mooring post — used for intertidal lab exercises
peg 15a: inter and subtidal concrete mound with stainless steel hole for peg – inter and subtidal

From peg 5 and 5a:
See Transect A0050101
See Transect A0050102
See Transect A0050103

___________________________________________________________

Return to the Contents page for Environmental modelling with Transects..

Ecological Niche -the Empirical Model

Return to the Contents page for Environmental modelling with Transects..

BACKGROUND HISTORICAL TREATMENT of the ECOLOGICAL NICHE
Joseph Grinnell 1917 the habitats and habits of birds
Charles Elton 1927 the species’ place in the biological environment, its relationship to food and predators.
G.F. Gause 1934 the intensity of competition between species suggest the degree to which their niches overlapped
David Lack 1947 realized that niche relationships could provide a basis for evolutionary diversification of species
G.E.Hutchinson 1959 was the first to define the niche concept formally as the activity range of each species along every dimension of the environment.

G. E. Hutchinson on the Niche Concept:  In 1957, in a paper entitled “the Niche Concept by G. E. Hutchinson defined the niche concept formally. One could describe the activity range along every dimension of the environment. Physical and chemical factors such as temperature, humidity, salinity, and oxygen concentration, and biological factors such as prey species and resting background against which an individual may escape detection by predators, could be determined. Each of these dimensions could be thought of as one of n-dimensions in space. Visualizing a space with more than three dimensions is difficult, since the concept of the n-dimensional niche is an abstraction. We may, however, deal with multi-dimensional concepts mathematically and statistically, depicting their essence by physical or graphical representations in three or fewer dimensions.

Ricklefs (1996) notes that “… for example, a graph relating biological activity to a single environmental gradient represents the distribution of a species’ activity along one niche dimension. The level of activity, whether oxygen metabolism as a function of temperature or consumption rate as function of prey size, conveys the ability of an individual to exploit resources in a particular part of the niche space and, conversely, the degree to which the environment can support the population of that species. In two dimensions the individuals niche may be depicted as a hill, with contours representing the various levels of biological activity. In three dimensions, we must think of a cloud in space whose density conveys niche utilization. Beyond three the mind boggles.”

Please see Hutchinson, R.E. 1957. Concluding remarks. Cold Spring Harbor. Symp. Quant. Biol. 22: 415-427.
Paraphrased from Ecology by R. E. Ricklefs 1996.
Hutchinson was the first to formally quantify the niche concept in terms of geometric space. For example, suppose the distribution of a given species of tree squirrel is determined primarily by 3 variables: branch diameter, acorn size and temperature. The “level of activity” describes the ability of the individual to exploit the resources in a given part of the niche space; in this case, number of squirrels foraging for a given level of each environmental factor. Then the niche space occupied by the species is the 3-dimensional space actually occupied by all individuals (Ricklefs 1996). This can be represented graphically as a contour plot.
An empirical model ( Box and Draper 1989) can be obtained by the empirical determination of “niche occupancy” (e.g. density, number of individuals, etc.) in terms of n environmental variables (these may be both biotic and abiotic). This model may be formalized as a second-order polynomial equation; the eigenvalues calculated from the matrix of coefficients of cross-product terms formally quantify the response surface in the area of the optimum response. The simultaneous evaluation of multiple variables is important in biological systems where optimum responses usually consist of a range of values rather than a single point.

THE EXERCISE
We have developed an exercise that allows one to take images from the transect file on the internet and process them, using the computer in order to quantify the ecological niche of organisms. The example provided is from the intertidal transect files from The Race Rocks ecological reserve, in Southern Vancouver Island, Canada.
Follow through the steps as indicated below.
a0050107.

1. For instance from this image from the first transect, A00501, (A0 being the Race Rocks location, 05 being the sample station location and 01 being the first transect at that location, 07 being the seventh quadrat from the top of the intertidal zone. ). Quadrat 07 looks like this. By clicking on this icon you will see this one sample of the actual photo from the transect file.

2. If we want to define the space that the mussels occupy in this quadrat, we have to measure the percent of the quadrat that they are covering. This could be done simply by cutting out a piece of acetate that has been made by xeroxing a piece of graph paper and overlaying it on the screen.

3. A more precise way of doing this is by using an Imaging program to help analyse different aspects of the photograph. Download this image by clicking on the full size image then pressing and holding the right mouse button on a PC or pressing and holding the mouse of a Macintosh . Note that the mussels occupy a portion of this quadrat, a meter stick on the left side gives you the size of the quadrat.

4. CONVERTING THE IMAGES:
Since the above image is in a .JPG format , it has to be converted to a .PICT format for image processing. Do this with a graphic processing program .

5. Using GifConverter: Open the .jpg file obove that you have downloaded. Save it as a .PICT file. This is the format that is necessary to use in the next stage of the process, using NIH Image to measure features of the picture.

6. If you do not have a copy of the freeware NIH IMAGE. Download it from this site. (Both Mac and PC versions are available)

7. INSTRUCTIONS FOR NIH IMAGE: See this file :

Measurement of Surface Area Using “NIH IMAGE”

Also there may now be other software that is easier to use for measuring surface area coverage if one does a google search.

UPDATE: Also from NIH .. ImageJ. http://wsr.imagej.net/distros/

Calibration:
a) To calibrate the image in terms of real units: Use the straight line tool on the left panel, and draw it the length of the meter stick.
b) Use the pull-down menu called “Analyze”; go to “Set scale” . Change the units to centimeters, and “known distance” to 100.00, then hit “OK”.
c) To compute area: From “Tools” menu, select the heart-shaped tool. Outline the total area occupied by mussels. Click on “Analyze options” ; be sure the area box is selected). Press “OK”. From tool bar, select “Analyze”, “Measure”, “Analyze”, “Show results”. A table appears with the area of mussel coverage (in cm2). To compute % area occupied by mussels, measure the total quadrat area with the above procedure except use the rectangle measurement tool to outline the entire quadrat box.

8. DOWNLOADING THE TRANSECT IMAGES: Now, repeat this procedure with all the quadrats in the belt transect strip that contain mussels, you will also have to copy down the elevation found at the base of each quadrat as well..

Go to one of the transect files.

See Transect A0050101
See Transect A0050102
See Transect A0050103

a00501

 

9. Select one of the transects, and download the clips.

 

 

tr50110. USING A SPREADSHEET
Now we have to enter the data into an EXCEL or other suitable spreadsheet.. We will give the detailed instructions for EXCEL.
Enter data in column format (each column is a separate variable).
Calculate:
(a) % area covered by mussels for each transect (area covered by mussels/total area)
(b) percent slope: distance in perpendicular height (elevation change between adjacent quadrats divided by the linear distance (one meter) .
To evaluate terrain gradient for each transect (that is, the steepness of the intertidal shoreline), you can graph the relationship between elevation and slope .

excelfile See this example .Here is a sample of the mussel distribution data as it appears on this spread sheet

 

 

 

musPLOTTING IN 3D

The goal of the analysis is to both describe and predict the environmental space that mussels must occupy in order to survive. The first step in the formal process is a graphical description of the environmental space actually occupied by the animals. In this example, the environmental space is the two dimensional space defined by the variables elevation and slope; the biotic “response” is the percent area occupied by mussels.We imported the variables X1 = “elevation”, X2 = “slope”, Y = “% mussel area” into a standard 3D graphics package (e.g. JMP-Contour Plot). The resulting graph gives the contour plots of mussel density as a function of the 2 environmental variables. Interpretation is similar to reading contour lines on an ordinary topographical map. Note that the “optimum” area for mussel settlement is a range of values for elevation and slope rather than a single point.

This file on Ecological Niche Models was developed by Penny Reynolds, Richard Rosecrance and Garry Fletcher at the Bioquest Consortium Workshop, on WHAT CAN WE LEARN FROM CONTEMPORARY MATHEMATICS REFORM? June 21-29, 1997. Beloit, Wisconsin. It was supported by a grant from the Howard Hughes Medical Institute to : The BioQuest Curriculum Consortium

1. Other websites on Photo transects :

Getting to the bottom of things

http://sango.churashima.okinawa/monitoring_en/cpc.html

Marine Algae of Hawaii.

Location of the photographic transects recorded during the benthic survey of the reefs in the Pondoland Marine Protected Area,

Return to the Contents page for Environmental modelling with Transects..

Race Rocks Transects : Sample

Tidal Levels
Procedures for Processing the Images
1998 Class Photo transects of PEG #15
North side of Great Race Rocks Island
Other transect images from different locations

BACKGROUND

The students and faculty of Lester B. Pearson College which is a member of the United World Colleges have used the ecological reserve and now the MPA of Race Rocks for studies of marine ecosystems, both subtidally and intertidally since1978. During that time a number of exercises have been developed to use in teaching ecological concepts in the International Baccalaureate Environmental Systems and Biology classes.

While using basic research techniques it has been possible to start to build up a library of information that can be more useful for determination of the effects of long term climatic changes or changes induced by humans, (anthropogenic). In addition this record may provide ideas to encourage others to apply the techniques to other ecosystems. In 1999 the Race Rocks Ecological Overview was added to help bring together the ecological information on Race Rocks.

NUMBERING SYSTEM

A numbering system had to be developed that reflected the concept that this was only one of many that could be referenced from this site if individuals from around the world were willing to collaborate with us in building the project.
LOCATION….PEG NUMBER…TRANSECT NUMBER….QUADRAT NUMBER..

A0………………….05………………………..01…………………………………..01………
Where:
A0 refers to the first site to be added to this WWW site
05 refers to the peg location ( we have 15 such locations permanently identified at the Race Rocks Ecological Reserve.)
01 refers to the first transect entered from this location.
01 refers to the first quadrat picture that you can access on this photographic strip.

SOME IDEAS FOR USE OF THESE TRANSECT PHOTOS

  • Quantify the distribution of organisms
  • Relate the distribution to the intertidal elevation
  • Find out how to capture these images
  • Use other technology to analyze the photos
  • Study the mussels in greater depth
  • Study other organisms from the transects in greater depth.
  • Students in environmental systems will use this as a source to prepare for investigations in the intertidal zone when we have the opportunity to do a field lab at the ecological reserve. The photo strips also could be used by those living far from an ocean shore to study the relationship between abiotic or physical factors and organism distribution. Also by noting the location of certain species, for instance the mussels, M. californianus and then seeing where they would fit on a tidal level chart for the area (using the Victoria Tide Tables) ,students could calculate the length of times for submergence and emergence of the species in a week, a month, or a year. In addition they could compare the conditions in the winter months, with the extreme low tides occurring in the night with the conditions in the summer months when the low tides occur every two weeks in the daytime. Students should be encouraged to discuss the results of their investigations and pose further questions about conditions in the intertidal zone. For a more in depth exercise on the Ecological Niche of organisms go here.
  • TIDAL LEVELS Since the location of organisms in the intertidal zone is partially determined by tidal levels, that is one of the essential measurements given with our transect images. It is important to understand that the levels given here are based on the Canadian tide tables
    Victoria Tide TablesThese are not calculated the same way as tables from the United States. To convert the elevations given here to conform to the US pattern in which 0.0 equals mean lower low water, subtract 0.8 meters from these Canadian readings.You may find further explanation on the operation of Tides in any marine Biology or Oceanography text. One that may be useful is:
    Seashore Life of the Northern Pacific Coast– by Eugene Kozloff, page 7-9.
  • For TIDAL Heights of Other LOCATIONS, use this link
  • THIS IS JUST A START!
    By looking here you might get a few ideas of how you can do some interesting investigations using these pictures. But don’t stop there, we would like you to collaborate with us by adding ideas and new transects to our list. It would be excellent if someone living on another ocean shore with different intertidal zonation patterns could supply a similar set of photographs for comparison.Go back to techniques for directions on how to contribute

Carmen’s lab on Transects

Race Rocks Transect Lab

Kite Diagrams

BELT TRANSECT PROCEDURE

About 20 meters from the dock on the north side of Great Race Rocks, we plotted our transect. Starting at the shore and going 15 m inland, we laid a tape measure and at every half-meter we made a 50cm-by-50cm quadrant and counted the species in the plot.

ANALYSIS:  We counted the algae by percent cover and the invertebrates by number. Some species overlapped, such as anthopleura and halosaccion. This coexistence was possible because the two species were not vying for the same food source. Species such as thatched barnacles and acorn barnacles did not live in the same quadrants, however. This may be because they are competing for the same substrate and nutrients and each prevents the other from invading into their space. As well, the thatched barnacles stopped growing at quadrant 15 but that is just where its competition, acorn barnacles began to grow. Perhaps one species was better suited to surviving farther up the shore.

That was the case for many of the species along the transect. Invertebrates like chiton, limpets and snails needed to be covered by the tide for most of its cycle. If these species tried to grow where they were exposed for a longer period of time, they would dry out and die. Other species like lichen need to be out of the water and as expected, were only found at high elevations on the transect.

The topography also affected the species diversity. The California Mussel, for example, was found only in quadrants that had crevices and rough substrate on which to grow.

In general, the abiotic factor that had the greatest affect on species diversity on the transect was the elevation and amount of tide cover the area got during a tide cycle. Below are kite diagrams of each species we found on the transect.

Carmen and Jana Environmental Systems class April 2003

LINK to photographic transect strip of this area

This x-axis represents percentage cover for the macroalgaes. Note it may be a different scale in the graphs. The y-axis represents the .5meter quadrat location from the peg #15.

The “series” 1 and 2 just represent half of the value for each quadrat for the species, a way to get EXCEL to plot a symmetrical “kite” shape

Anthopleura elegantisima ( green intertidal anemone)

Hedophylum sp. ( Brown wrinkled algae)

Analepus sp. ( rare algae)

Praseola sp. (green mat algae)

Xanthorea sp. (yellow Lichen)

Porphyra.sp

Hildenbrandia sp. ( red thin cust algae)

Alaria marginata ( brown Algae)

Coralina sp. ( pink coraline algae)

Fucus sp.

Gigartina sp. (red algae)

Cryptosiphonia sp. (like wet dog hair)

Halosaccion sp.. (salt sac algae)

Golden Diatom

Ulva lactuca Sea lettuce

Mitylis californianus California mussel

Searlesia dira ( Spindle Whelk)

Amphysia sp. Snail

Neomolgis sp. Red Spider Mite

Purple Nucella Snail

Limpet

Acorn Barnacles

Thatched Barnacles

Littorina Periwinkle snail

Katharina sp. (leather chiton)

 

See Transect A0050101
See Transect A0050102
See Transect A0050103

Return to the Contents page for Environmental modelling with Transects..

Intertidal Zonation of Halosaccion glandiforme:

EXTENDED ESSAY IN BIOLOGY
INTERTIDAL ZONATION OF HALOSACCION GLANDIFORME:
A FOCUS ON HEIGHT AND SLOPE AS FACTORS OF ZONATION

LESTER B. PEARSON COLLEGE

ALEX C. FLETCHER

JANUARY 14, 2002

ABSTRACT:
An intertidal study of the organism Halosaccion glandiforme was performed at Race Rocks Marine Protected Area a unique and undisturbed island located seventeen kilometres southwest of Victoria in the Strait of Juan de Fuca . Belt transects from three similar locations on the island were taken from the zero tide level up past the high tide mark. These transect photos were combined with other measurements and calculations to look at the variables influencing growth in the intertidal zone. The intertidal zone is unique in its numerous abiotic and biotic factors that influence life in the region. For the purpose of this study two of these factors were chosen in an attempt to quantify the possible relation that exists between them and the ecological niche of Halosaccion glandiforme. Vertical elevation from the zero tide level and angle of inclination of the rocky shore were compared with population density of the species. While analysis of slope and population density relation proved fairly inconclusive, simple statistical testing showed that a trend does exist between intertidal height and population density of Halosaccion glandiforme.  

Table of Contents

List of Figures and Tables

Introduction………………………………………………………………………1

The Problem

            Purpose and Background of the Study

            Hypotheses

            Limitations  

Review of Literature and Related Research…………………………..……….3

Introduction, Information about the organism

            The Theory

            Research Results in Related Areas

Research Design and Procedures……………………………………………7

The Setting and Population of the Study

            The Experimental and Control Groups Used

            Instruments Used

Analysis of Data…………………………………………………………….…10

Introduction

            Findings that Relate to Hypotheses 1 and 2

            Statistical Analysis

            Findings that Relate Hypotheses 3 and 4

Conclusions and Recommendations for Further Study…………….…….20

Interpretations and Implications of the Findings

            Recommendations

References Cited…………………………………………………………..…..…22

Appendix………………………………………………………………………..23

Transect-peg 5

            Transect-peg 5b1

            Transect-peg 6

List of Figures and Tables

Figure 1.   A small cluster of Halosaccion glandiforme, among barnacles, is shown growing next to a tide pool. …………………………………………………………………………. 1

Figure 3.   Areal view of Race Rocks Marine protected Area. Yellow markers indicate locations of study pegs and belt transect line ……………………………………………… 6

Figure 4. Working with H.glandiforme at the race Rocks Marine Protected Area…………………………………………………………………………………………………………7 
Figure 5.
  This image represents an example of a meter segment from the belt transect (taken from peg 6 at meter 4). …………………………………………………………………….. 8

Figure 6.   This image is an example of a meter segment from a belt transect (peg6, meter segment 4).  ………………………………………………………………………………………. 9

Table 1. Population density (in percent coverage of each meter segment) is shown in relation to the mean
of vertical height of the corresponding meter segment from measurements at peg 5. ………………………………………………………………………………………………………….. 10

Table 2. Population density (in percent coverage of each meter segment) is listed in relation to the mean of vertical height of the corresponding meter segment from measurements at peg 5b1. …………………………………………………………………. 10

Table 3. Population density (in percent coverage from each meter segment) is shown in relation to the mean of vertical height of the corresponding meter segment from measurements at peg 6. ……………………………………………………………………… 10

Figure 7. Graph of data from table one, peg 5.………………………………………… 11

Figure 8. Graph of data from table 2, peg 5b1.………………………………………… 11

Figure 9. Graph of data from table 3, peg 6……………………………………………… 12

Figure 10. Graph of population density in relation to mean of intertidal vertical height with

the three belt transects combined. ………………………………………………………….. 12

Table 4. Table of combined data of the significant values for the analysis of normal distribution from three pegs. …………………………………………………………………… 13

Table 5. Data table of expected normal distribution values and obtained distribution values used in conjunction to perform chi-squared test.………………………………………… 13

Figure 11. Graph of percent coverage vs. vertical height, comparing obtained values to normal distribution values………………………………………………………………………… 14

Figure 12. Graph of peg 5, belt transect terrain profile. ………………………………. 15

Figure 13. Graph of peg 5b1, belt transect terrain profile…………………………….. 16

Figure 14. Graph of peg 6, belt transect terrain profile………………………………… 17

Table 6. This data shows percent coverage in relation to the slope of the intertidal zone. …………………………………………………………………………………………………………..  18

Figure 15. Graph of table 6, the relation between population density and intertidal slope……………………………………………………………………………………………………..18

Introduction

image001

Figure 1. A small cluster of Halosaccion glandiforme among barnacles, ius shown growing next to a tidepool

The Problem:The purpose of this study is to try and quantify certain factors that are a part of the ecological niche of the sea sac Halosaccion glandiforme (figure 1) from the Rhodophyta division. From observing this plant on numerous occasions it is clear that this organism grows in a limited vertical range on the intertidal zone, the threshold between marine aquatic and terrestrial environments. It is likely that a specific physical setting exists for this species, and similarly with other intertidal species, where growing conditions are optimal. The main focus will be to look at the extent to which slope and elevation, in the tidal zone, affect the ideal habitat conditions of the Halosaccion glandiforme.

Purpose and background of the Study

image004

Figure 2. Picture showing Halosaccion glandiforme growing up to but not on a vertical surface.

Similar to all rocky intertidal dwelling species Halosaccion glandiforme is well adapted to survive the dynamic conditions presented in this ecosystem. This zone is characterized by the rapid changes and variability of temperature, light, moisture, salinity, and water movement. The aqua dynamics of the sea sac’s streamlined shape decreases the friction between it and the constantly moving marine waters. H. glandiforme are well anchored to surfaces (usually rock) by strong attachment devices as well as by growing in clusters of its own kind it is more protected. Being a water-filled sac the plant is less susceptible to the changes in moisture and temperature as a result of the tidal waters that are more limiting to other algae such as sea lettuce (Ulva fenestrata) and Purple laver (Porphyra perforata). From observations a growth trend along certain elevations, where the appropriate conditions of moisture and sunlight are found, appears to exist for H. glandiforme and other intertidal species. Also based on observation (figure 2) it seems as though the inclination of rock

surface influences the location of intertidal species including the H. glandiforme. This may be caused by the force of water movement along flatter, less restrictive surfaces, compared to steeper surfaces where friction between rock and water results in turbulence and a rough growing site for organisms. The characteristics and adaptations of each intertidal organism determine its niche. In looking at some of the many determining variables that exist along the seashore we can attempt to quantify this area.

Hypotheses

Hypothetically there is a measurable height at which this alga prospers as well as a preferred degree of inclination for its growth. A higher density population trend along the intertidal zone at this level would represent this.

  1. Ho- There is no significant relation between Halosaccion glandiforme population density and the vertical elevation on the tidal zone.
  2. Ha- there is a significant relation between Halosaccion glandiforme population density and the vertical elevation on the tidal zone
  3. Ho- There is no significant relation between inter tidal angle of slope and population density of the Halosaccion glandiforme.
  4. Ha- There is a significant relation between inter tidal angle of slope and population density of the Halosaccion glandiforme.

Limitations

This study is limited by only taking data at one point in the growing season of the plant and by not having the time to repeat collections of data several times over an extended period of time. The site of study, performed at Race Rocks Marine Protected Area is a prime location for flourishing intertidal life. However, taking measurements and data from three locations in one confined area is limiting in respect to the broadness of the viability of the results. Due to restrictions of time it was not possible to explore further relations and effects of abiotic and biotic factors. In addition many of the highly influential factors (such as wave motion, temperature, etc.) are not easily quantified and are not easily controlled thereby limiting the accuracy and broadness of the study and it’s findings.

Review of Literature and Related Research

Introduction, Information about the Organism

Specific information on Halosaccion glandiforme is limited beyond short physical descriptions and categorization. In Pacific Coastal marine texts Halosaccion is often referred to for its intertidal qualities while actual studies on the plant were not found while researching the topic. Typical descriptions of Halosaccion glandiforme depict the plant as a thin-walled elongated sausage-shaped sac found in the mid-intertidal region of rock dominated shores. The plant is identifiable by its rounded head and short stipe anchored by a small circular holdfast. Also, resulting from the water it contains, applying pressure to the plant produces fine sprays of water emitted from the pores.     In Common Seaweeds of the Pacific Coast (by J. Robert Waaland) it is stated that “Halosaccion glandiforme may reach lengths up to 25 cm and 3 to 4 cm in diameter; typical sizes are about 15 cm long by 2 to 3 cm in diameter.” The maximum length (25cm) is far greater than those studied in this paper. Typical sizes, in the populations and the physical vicinity of the study for this paper, were closer to a range of 1 to 10 cm in length.

The Theory

While theory in the area of inter tidal zone life is limited there is literature that states observations relating to the structured zonation that occurs in the intertidal zone. The slope hypothesis is related to a general description of the influence of shoreline gradient on intertidal zonation provided in Pacific Seashores A Guide to Intertidal Ecology (Carefoot, 1977). “Generally, where the range of the tides is small, or where the slope of the beach is steep, the bands are narrow; where the range of the tides is great, or where the slope of the beach is flat, the zones are wide.” From this statement it is clear that physical factors such as slope are influential on the intertidal zonation and banding of species. In Seashore Life of the Northern Pacific (Kozloff, 1996) it is stated that “On flat-topped reefs and rocks that do not have steep slopes, there should be plenty of Halosaccion glandiforme.” This provides a basis for the concept that shoreline gradient is plausible as a factor influencing the growth of Halosaccion. Therefore such factors of the intertidal zone directly affect the band of ideal growing conditions for organisms.

A theoretical description for universal zonation is presented by Stephenson’s “universal” scheme of zonation (Stephenson, 1949). This scheme is representative of the diverse zonal patterns around the world. It divides tidal shores into five main categories. From highest to lowest is the Supralittoral zone above the tidemark being mainly terrestrial however influenced by spray from waves and ocean mist. Below is the supralittorial fringe that encompasses the upper intertidal zone including the highest living barnacle and lowest limits of lichens. The Midlittoral zone is the whole intertidal area from the most elevated barnacles to the most elevated brown algae. The lowest edge of the intertidal zone represents the beginning of the Infralittoral fringe that continues to the lowest mark visible between waves at low tide. Bellow is the final tidal zone called the Infralittoral zone being almost constantly submerged. In this scheme Halosaccion glandiforme is situated between the extreme high water mark and the extreme low water mark somewhat centrally in the midlittoral zone.

Research Results in related areas

The most significant research results that relate to this paper involve work done on the abiotic features that affect the growth of intertidal organisms. While the research is not specific to Halosaccion glandiforme it is relevant to the intertidal zone occupied by this species.

The primary factor in determining growing location for algae results from the production of their many spores and the conditions that affect where the spores choose to settle. The few spores that survive and continue to develop into their gametophyte forms will only survive if they are in appropriate niche for that species.

There is much research that has gone into the effect of tidal levels and variation on zonation. The theory of zonation is based on the relationship between intertidal zones and tide levels. However it is not “universal” as it has been found (even by the Stephensons) to be inaccurate in certain situations. This comes from the influence of other factors that cause variance between intertidal zones and that must be considered when studying this area. The cycles that tides go through, in accordance with the sun and predominantly the moon, will affect the intertidal zone configuration by controlling the submersion of the intertidal zone and its organisms.

The upper limits of the intertidal zone are subject to temperature fluctuations and other abiotic terrestrial environmental factors such as air movement and fresh water that effect growth. Water retention enables certain species to survive for longer periods of time out of the water and therefore higher in the intertidal zone. The effects of exposure on seaweeds has been studied by Kanwisher (Kanwisher, J, 1957). In his article “Freezing and drying in intertidal algae” he measures water loss in certain algal species of the intertidal area. A brown alga Fucus vesiculosus was recorded as having lost 91% of its moisture to evaporation from solar heat. In laboratory work performed he found that this level of evaporation would occur in a period of about an hour and half. Similarly Enteromorpha linza demonstrated an 84 percent loss of water and Ulva lactuca a 77 percent loss of water when subject to terrestrial conditions. It is likely that the structure of Halosaccion glandiforme, being a water retentive sac, permits for lengthier exposure time with a higher level of water retention.

Light is a very influential aspect on intertidal life and zonation. As the source for photosynthesis it is vital to plant life. However it is also harmful in that ultra violet light can damage plant tissue. The sun’s UV rays can bleach marine plants that spend extended periods of time out of the water.

There is also the factor of competition for growing space amongst the many species and individuals occupying the limited space of the intertidal zone. As well predation and grazing by herbivores will affect the growing conditions of intertidal species.   The abrasive action by waves is a determinate in zonation separating stronger better-adapted organisms from those that are not able to endure the conditions. Some organisms have greater survivability in such conditions through growing in clusters, having streamlined shapes, sturdy holdfasts, and other such features.

Research Design and Procedures

image008

Figure 3, Aerial view of Race Rocks Ecological Reserve. Yellow markers denote location of study pegs and belt transect lines.

The Setting and Population of the Study

The data collection for this study was carried out at Race Rocks Marine Protected Area located 17 kilometres southwest of Victoria in the eastern Juan de Fuca Straight. Of the nine islets in the area, the main rock (with the lighthouse) was the site of this study. Three locations on the West facing side of the island were selected for the belt transects. Two of the three locations were already marked with study pegs, pegs 5 and 6. The other site located in between peg 6 and peg 5 was not pre-marked and is therefore referred to as peg 5b1 for this and future studies. The peg locations are visible in the diagram of Race Rocks (figure 3). The transect photographs were taken consecutively from the waters edge (at low tide, approximately 0m tide) up perpendicularly to a point beyond the intertidal zone. This point varied with each transect as the intertidal zone varies with the height and slope.

image010

The author working with Halosaccion glandiforme at Race Rocks Ecological Reserve.

The Experimental and Control Groups Used  

In using three transect belts the correlation between variables is based on a wider average of results. By setting all three transects to begin at the zero meter tide level they can be accurately compared. In taking the transect belts in proximity to one another they are more likely to be of similar conditions. For example, all three transects were on the same side of Race Rocks facing the same swell and wind directions. Therefore more variables are eliminated that could make comparison amongst them more obscure.

Instruments used

In creating the belt transects, a measuring tape over 10 meters long with markers for every meter was placed along the tidal zone tight to the rocks. The photos were taken along the measuring tape with a Sony Digital Camera. The photos were taken from about 1 meter above the ground (approximately waist height). One photo would cover a section of about fifty centimeters. The photos were taken overlapping the previous so that they could be fit together appropriately at a later time.

With the measuring tape in place the next step was to measure the physical height of the rock slope along the transect line. Height was measured at every 50 cm interval. A meter stick would be held perpendicular to (for example) the 1 meter mark and the 1.5 meter mark. By placing a third meter stick with a liquid level attached perpendicular to the initial stick and butting up horizontally to the second stick the difference in height was obtained.

These values were recorded in a chart and then used in the making of a height and slope outline graph of the rock surface at the transect belts.  In collating the individual transect photos into one cohesive transect belt the computer imaging program Adobe Photo 4 was used. After splicing the pictures appropriately the meter marks were marked by a line and each cluster of Halosaccion glandiforme was outlined for further analysis (figure 5).

image013Figure 5. This image represents an example of a meter segment from the belt transect (taken from peg 6 at meter 4). The measuring tape is visible as yellow line at the top of the image. The meter segments can be seen marked by white vertical lines at the sides of the image.

Further computer analysis was carried out using Scion Image for Windows. This program provided the capability of measuring the population density of Halosaccion glandiforme along the transect belt. The area of each transect section was measured scaled to the according meter segment length. Each meter section on the belt transect varied slightly from the others, as did the area of each meter segment. This is because of discrepancies in the distance between the camera and the shore, a source of error that is hard to avoid completely with such rough rocky intertidal terrain. Finally the total area covered by Halosaccion glandiforme clusters, as seen outlined in orange (figure 6), was measured in each meter segment. When compared to the corresponding area measurements of their meter segment the population density of Halosaccion glandiforme could be determined as a percentage covering of that area.
image015Figure 6. This image is an example of a meter segment from a belt transect (peg6, meter segment 4). The orange outlines represent the area covered by Halosaccion glandiforme. With measurements scaled to the according meter as presented by the measuring tape the area of the meter segment and the Halosaccion coverage was calculated and compared.(For complete belt transect of peg 6 see appendix.)

Analysis of Data

Introduction

With the data obtained from the belt transects of the intertidal zone the results of height and population density were compiled into tables and subsequently graphs to represent the possible relation. Also the data for the effect of surface slope on population density was converted into a graph.

Findings that relate to Hypothesis 1 and 2

Transect meter segment Mean of height Percent coverage of area
1 0 0
2 35 0
3 60 0
4 85 3.4
5 115 60.9
6 145 89.6
7 170 1
8 165 14.1
9 200 0

Table 1.  Population density (in percent coverage of each meter segment) is shown in relation to the mean of vertical height of the corresponding meter segment from measurements at peg 5.

 

Transect meter segment Mean of Height Percent coverage of area
1 5 0
2 17 0
3 21 0
4 70 1.6
5 110 23.8
6 160 46.8
7 190 10.7
8 230 0

Table 2. Population density (in percent coverage of each meter segment) is listed in relation to the mean of vertical height of the corresponding meter segment from measurements at peg 5b1.

 

Transect meter segment Mean of height Percent coverage
1 2 0
2 50 0
3 132 26.6
4 170 49.5
5 190 0
6 203 7.1
7 210 1.4
8 230 0
9 258 0

Table 3. Population density (in percent coverage from each meter segment) is shown in relation to the mean of vertical height of the corresponding meter segment from measurements at peg 6.image019

Figure 7.  Graph of data from table one, peg 5. This figure represents the relation between population density (in percent coverage from each meter segment) and vertical height.image022

Figure 8. Graph of data from table 2, peg 5b1. This figure represents the relation between population density (in percent coverage from each meter segment) and vertical height.image025

Figure 9. Graph of data from table 3, peg 6. This figure represents the relation between population density (in percent coverage from each meter segment) and vertical height.image028

Figure 10. Graph of population density in relation to mean of intertidal vertical height with the three belt transects combined.

Statistical Analysis

Vertical height Percent coverage
70 1.6
85 3.4
110 23.8
115 60.9
132 26.6
145 89.6
160 46.8
165 14.1
170 49.5
170 1
190 25.4
190 10.7
200 0
203 7.1
210 1.4

From the compiled data the significant values, those values that fell within the extremes of the range of population occurrence (table 4), were used for further analysis by means of normal distribution calculations. To test the obtained values against the values expected of a normal distribution curve a graph (figure 11) was produced.   Of the fifteen obtained values for vertical height the mean is 154.33 meters. Therefore the standard deviation is 43.71 meters from the mean. In accordance with a normal distribution the first standard deviation (from the mean to 110.62 and 198.04 cm) is expected to hold 34% of the values. At the second standard deviation (at 110.62 cm and 241.75 cm) 13.6% of the values are expected to be present. Finally the third standard deviation (at 23.2 cm and 285.46 cm) is expected to contain 2% of the values. With 15 values in this data set (table 4) the expected number of values for each deviation can be calculated from the expected percent (table 5).

Expected percent 2% 13.6% 34% 34% 13.6% 2%
Expected 0.3 2.04 5.1 5.1 2.04 0.3
Observed 0 3 3 6 3 0

Table 5. Data table of expected normal distribution values and obtained distribution values used in conjunction to perform chi-squared test.

The chi-squared statistic was calculated from this table (table 5) as 2.864. When this number is checked with the chi-square distribution table at five degrees of freedom it falls bellow the critical 95 percent value of 11.1. Therefore, there is a 95 percent certainty that the results fit the expectations and that the obtained values represent a normal distribution.

Findings that relate to hypotheses 3 and 4

To obtain the angle of inclination for the terrain of the belt transects it was necessary to create three graphs (figures 12, 13, and 14) from the height measurements (see Instruments used) taken along the three transect lines. With the use of a protractor the angles were extrapolated from each graph (table 6). The angle measurements represent the mean of inclination for each meter segment from each transect. The calculated angles were compared to the percent coverage values that they represented. The angles are only calculated from the meter segments where a significant population density of Halosaccion glandiforme is present as slope will only be influential in the identified zone where H. glandiforme usually grows. Therefore it is mainly from the 100cm to 200cm vertical height sections of each transect belt that angle of inclination is measured.

Figure 11 (To be scanned and added later)

Figure 12 (To be scanned and added later)
Figure 13 (To be scanned and added later)
Figure 14 (To be scanned and added later)

Angle of inclination Percent coverage
10 25.4
10 49.5
15 46.8
15 89.6
15.5 60.9
20 23.8
20 10.7
21 26.6

Table 6. This data shows percent coverage in relation to the slope of the intertidal zone. Slope is measured to represent the mean slope of each meter transect segment. Slope is only taken from the segments of the three transects where there is significant population density of Halosaccion glandiforme. Therefore it is mainly from the 100cm to 200cm vertical height sections of each transect belt.image031

Figure 15. Graph of table 6, the relation between population density and intertidal slope.

Conclusions and Recommendations for Further Study

Interpretation and Implications of the Findings

The three individual transect graphs (Figures 7, 8, and 9) show a trend between the relationship of vertical intertidal height and the population density of Halosaccion glandiforme. The majority of Halosaccion glandiforme were found to grow between vertical heights of 100 cm and 200cm from the zero tide level. The highest recorded level of population density in each belt transect varied slightly, ranging from 145 cm vertically to 160 cm vertically. When the distribution of obtained values for height and percent coverage were compared to the normal distribution it was found that the observed results fit with 95% confidence of the expected. This suggests that the observed results are not distributed by chance occurrence but are due to a trend. The null hypothesis (Ho) is disproved and the hypothesis (Ha) is accepted, as a significant relation does exist between Halosaccion glandiforme population density and the vertical elevation on the tidal zone. It is important to place this in context however as the results are based on data from a close proximity as to decrease the variability of results. It is likely that H. glandiforme populations even on the opposite side of Race Rocks, subject to different lighting, swell action, and other possible conditions, could demonstrate a different set of results.   Therefore this part of the experiment could be repeated and produce similar distribution results in the same vicinity and perhaps exhibit similar trends in a wider range of locations.

The slope percent coverage relation graph needed more data taken at more specific intervals to produce significant results. Since this relation could only be studied at heights where predetermined growth was expected it limited the data to eight significant values.   The graph suggests that growth is optimum on gradients of 10 to 20 degrees with the higher population densities at 15 degrees. Yet this is not reliable as it is clear from the terrain profile graphs (figures 11, 12, and 13) that there is not a great level of variance in shoreline slope at the sites of the belt transects. There was no data collected from terrain that exhibited more extreme angles. Slope most likely affects the growing conditions of Halosaccion glandiforme however it is only one several variables that together create intertidal zonation and is therefore difficult to quantify. This study was not sufficient to come to any conclusions concerning the hypothesis and the hypothesis (Ha) is not accepted.

Recommendations

While trends were observed in this study there are many conditions that must be taken into account. The data was collected at Race Rocks in July and cannot be considered relevant for the whole year. While the H. glandiforme populations are anchored to the rock and are not likely to vary extensively in position over time, the data would be of greater accuracy if it were collected and compared over an extended time. The data collection, as previously stated, is from one limited range and has not been tested or compared with intertidal zones in any other area. For further study it would be interesting to compare growth trends in different locations. Also the percent coverage values, that were vital to findings, were calculated (using Scion Image pro.) are covered by the species. For a more in depth study, population density calculations would be more accurate if they took into account the size and number of the individual organisms. One of the most limiting factors encountered in the analysis resulted from the scale of the measurements taken. For both hypotheses the results were based on data collected from intervals of one meter along the belt transects. Any discrepancy or variation that occurred in vertical height, slope, or population density inside the transect meter segment could not be taken into account. If repeated the data analysis would be far more conclusive had measurements been taken at smaller intervals of, for example, 10cm instead of 100cm.   This study focused on the intertidal organism Halosaccion glandiforme and the effects of elevation and slope on its population density. There are, however, many other variables and species that affect and grow in the intertidal zone and could be considered and tested similarly to analyze and quantify the intertidal area.

References Cited

  1. Waaland, Robert J. 1977, “Common Seaweeds of the Pacific Coast”. J.J. Douglas Ltd. Vancouver.
  2. Stephenson, T. A. and Stephenson, A. 1949, “The Universal features of zonation between tide-marks on rocky coasts.” Journal of Ecology. 37, 289-305.
  3. Kanwisher, J. 1957, “Freezing and drying in intertidal algae.” Biological Bulletin 113: 275-285.
  4. Carefoot, Thomas. 1977, “Pacific Seashores A Guide to Intertidal Ecology”. J.J. Douglas Ltd. Vancouver.
  5. Kozloff, Eugene N. 1996, “Seashore Life of the Northern Pacific Coast”. University of Washington Press. Seattle.
  • Appendix
PHOTO STRIP OF BELT TRANSECT FROM PEG#5 PHOTO STRIP OF BELT TRANSECT FROM PEG#5b1 PHOTO STRIP OF BELT TRANSECT FROM PEG#6

 

Other Transect Files
Sitemap Location and Maps Educational Resources Index Contact webmaster:
Garry Fletcher
Copyright

Royal Roads Environmental Management Students Visit Race Rocks

In late JULY of 1999, two sections of the summer class in Environmental Studies at Royal Roads University ( 47 students) went on field trips to Race Rocks. Royal Roads Instructors Norm Healey and Bev Hall worked with the students . These are some images taken by the students on the trip :

Higher Level Biology field trip to Race Rocks-April 1999

The Higher Level Biology students traditionally have done several field trips each year to Race Rocks. On this trip in April of 1999, each of the groups in the class were documenting the profile and the populations of organisms along transects they had chosen in the Intertidal Zone.

Transect Study- Environmental Systems Class peg-15

PEG 15 TRANSECT
ENVIRONMENTAL SYSTEMS CLASS

transect_gfApril 1998: For this Exercise, a section of gently sloping shoreline to the East of the Docks at Peg #15 was chosen.(large old original oil-barge docking post  This intertidal zone rock is exposed to the North West, but protected by the corner of Great Race Island projecting to the West. The transect was laid at a bearing of 285 degrees. Maximum exposure of the area occurs when the wind blows from the North East in the winter months. This work was done in April when the area experiences the first of the low tides in the early part of the day.

 

 

RoyalRoadstransectAlso see the images of the Royal Roads students working on peg 15 in the summer of 1999.

The following is the transect strip. It will take a few minutes to download the whole strip ..

The photos for the transect strips were taken in 8mm video by Sebastian and Garry after the class recorded the details of species distribution over the 50 cm strip, running perpendicular to the shoreline.

Images of the students were scanned from slides taken by Duane Prentice, a professional photographer who lives in Victoria and is an Alumni of Pearson College.. Images copyrighted, 1999 by Duane Prentice.

PEG 15 : PHOTO BELT TRANSECT

Bearing 285 degrees. This area has a fairly constant slope for the 12.5 meters over a vertical range of 3 meters.The photos, one half meter in length, were taken from a video at low tide, in APRIL 1998 by Garry and Sebastian.
Investigation: 1. Plot a profile of the shoreline given the information provided.2. Determine the percentage coverage of the different species of algae shown.3. The physical factors of the habitat of an algae living high in the intertidal zone like Porphyra changes with the seasons. In this area, our low tides occur in the daytime in the summer and in the night time during the winter. It would be revealing to compare the exposure during the daytime in February or March with the exposure in June. First determine from the profile drawn above, the range of tidal level where this species lives intertidal. Then go to the data page where you can access the Tidal Predictions for Race Rocks . From the tidal level profile for Victoria, you will be able to see a graph of the tide levels .Determine how many hours this Porphyra will be exposed to the air by recording the cumulative lengths of time that the water level does not go above the lower limit of the algae. If you do this for different times of the year, you will be able to quantify the time spent submerged or emmerged over a number of days. Be sure to take into account the time of the tidal cycle when choosing days to measure, because you will notice a two week pattern of Spring ( maximum range ) and Neap( minimum range) tides.

Based on your evidence, suggest a hypothesis that could explain why this algae disappears from this area for most of the summer.

BELT TRANSECT PHOTO

Distance in metres from peg 15 is at the bottom of the picture 
Comments and species identification follow the pictures

Notes: at 0.5 metres: This is the upper level just below peg15 The yellow lichen at the top by the peg is Xanthoria parietina
At 1.0 Metres : Life is very sparse in this high splash zone, although a prominent invertebrate that we find is the tiny red miteNeomolgus.sp.
At 2.0 metres: Life is very sparse in this high splash zone, although a prominent invertebrate that we find is the tiny red mite Neomolgus.sp
At 3.5 metres: A few barnacles are starting to appear in the moist crevices.
At 6.5 Metres :Barnacles almost totally cover this areas for several meters
At 8.0 metres: The sea lettuce, Ulva lactuca starts to appear.
At 9.5 metres: The brown algae here is Alaria sp
At 11.5 metres: The wrinkled brown algae: Hedophyllum sp.
At 12.5 metres : The green grass-like plant is Phyllospadix sp , (an Angiosperm, not an Algae)

See Transect A0050101
See Transect A0050102
See Transect A0050103

___________________________________________________________

Return to the Contents page for Environmental modelling with Transects..

Why do Transects ? overview and techniques

THE OVERVIEW:

Images of transects applied to biological systems provide educators and students an opportunity to explore a wide diversity of systems and habitats. Traditionally, transects have been used in ecological studies to understand populations and community associations within selected habitats. The same concepts may be used to investigate any number of other biological systems ranging from individual organisms, or parts of organisms, to global ecosystems.
The transect provides a tool to focus attention on specific, selected systems and the effects of abiotic and biotic parameters affecting those biological units in the system. Qualitative and quantitative analyses by students at many levels, utilizing the resources of the world wide web, will provide the ability to study not only the specific transect site, but to link those studies with related research and information. It is our expectation that this exercise will not only provide an opportunity for an actual educational experience but will form the initial stimulus for contributions on new sites by other individuals and groups on a world wide basis. This would transfer the collaborative classroom exercise to a research activity reflecting the collaborative nature of international science.Educators and students are encouraged to use, among others, the BioQUEST philosophy of collaborative learning to develop additional exercises that support the use of transects as a tool for biological investigations and learning.

Collaborative Curriculum Lead-In:

Using the internet with biological transects can enhance knowledge and appreciation of important relationships in established biological systems. It is an ideal technique to foster and promote collaboration among students of a class, or between students from different geographic areas, the states or provinces, and countries. Teachers at all levels (K- 16) can take advantage of this medium to introduce students to the WWW as an information-providing tool, and as a research tool (example: NIH Image). Furthermore, they are encouraged to get their students to provide other examples of transects so that a transect data base on the web can be expanded. It could eventually include a wide variety of biological systems whether from a microscopic view point or a satellite perspective.

TECHNIQUES:

The basic premise of the initial transect presentations on this web site is of transects established linearly across a biological site (often through an environmental gradient). The measuring device used depends on the size of the site and the logistical constraints in putting it into place. It is envisioned that eventually transects ranging in size from a microscopic level to a satellite image level will appear here.

Note: to be useful for this project, all images contributed must have a reference measurement scale visible or the scale must be known so that it could be inserted into the pictures. Photos also need to be of good quality. It is also possible that accurate drawings could provide the image for a transect.

BIOLOGICAL SYSTEMS

Transects may be used in any biological system that is appropriate to the educational and scientific mission. What is presented here are suggestions for choosing habitats; the list is not all-inclusive, but hopefully a stimulus for further selection and development of sites. Most of our natural ecosystems in the world are being affected by the onset of Climate Change. If we are to know what the components of a natural ecosystem are , we need to document them before irreversible change occurs,  

EXTERNAL SITES:

1. AQUATIC HABITATS:

a. Marine

  • Water column (vertical and horizontal transects; use of satellite imagery)
  • Rocky Intertidal
  • Mud Flats
  • Sandy Beaches
  • Subtidal
  • Cobble and Shingle Beaches
  • Tide Pools
  • Coral Reefs
  • Thermal vent communities
  • Ice Flow Communities

b. Estuarine

  • Water column
  • Mangrove communities
  • Mud and sand flats
  • Salt marshes
  • Lagoons
  • Docks and pilings

c. Fouling (Settlement) communities

d. Freshwater

  • Lakes and ponds
  • Ephemeral pools
  • Rivers, streams and creeks
  • Marshes

2. TERRESTRIAL HABITATS:

  • Forest and woodland
  • Grassland
  • Savannah
  • Chapparal
  • Deserts
  • Urban lot
  • Agricultural fields
  • Tundra

INTERNAL [LABORATORY BASED] SITES:

1. Microscopic communities: use of bacteria, protists, invertebrates, algae

  • Petri dish populations
  • Tissue culture populations
  • Glass slide populations

2. Macroscopic habitats

  • Aquaria – marine, estuarine and freshwater
  • Terraria – desert to moist 

We hope that this page will soon expand to include a wide range of images of very different transects. Some of the transects we would like to see contributed are :

    • A transect through a bog ecosystem.
    • A transect through an alpine ecosystem from the foot of a melting glacier.
    • A transect through the shoreline of a drying salt pan as one sees in Saskatchewan or other locations on the North American Plains.
    • Aerial transects from the tundra showing distribution of Caribou herds and vegetation .
    • Aerial transects through the savannahs of Africa showing animal distribution patterns .
    • Coral Reef and Mangrove Forest transects.
    • Vertical Transects in Forest Ecosystems.
    • Microscopic Transects.

    HOW DOES ONE PREPARE IMAGES TO BE ANALYZED?
    ECOLOGICAL NICHE MODELING: This file gives detailed instructions on the method used to download pictures for processing, measuring, and further work. It also contains details for an exercise on the 3D modelling of ecological niches of organisms.

ORIGINAL AUTHORS:

This program was developed at the 1995 BioQUEST Summer Workshop on Collaborative Learning, Peer Review, and Persuasion in Biology Education at Beloit College, WI. USA
The authors of the program were :

  • Lynette Padmore, Florida A & M University, Tallahassee, Florida
  • John Moon, Harding College, Searcy, Arkansas
  • Ned Lyke, California State University, Hayward, Hayward, California
  • Gabriele Wienhausen, University of California, San Diego, La Jolla, California
  • Garry Fletcher, Lester B. Pearson College, Victoria, B.C. Canada

Peg 5 sample transects
See Transect A0050101

See Transect A0050102
See Transect A0050103
_____________________________________________________________

Return to the Contents page for Environmental modelling with Transects..